A man can see only between 75 cm and 200 cm. the power of lens to correct the near point will be:

Get Instant Solutions

When in doubt download our app. Now available Google Play Store- Doubts App

Download Now

A man can see only between 75 cm and 200 cm. the power of lens to correct the near point will be:

  • Correct Answer: A

    Solution :

                       For improving near point, convex lens is required and for this convex lens                    \[u=-\,25\ cm,\] \[v=-\,75\ cm\]                    \[\therefore \frac{1}{f}=\frac{1}{-75}-\frac{1}{-25}\Rightarrow f=\frac{75}{2}cm\]            So power \[P=\frac{100}{f}=\frac{100}{75/2}=+\frac{8}{3}D\]

warning Report Error


Page 2

  • Correct Answer: B

    Solution :

               In short sightedness, the focal length of eye lens decreases, so image is formed before retina.

warning Report Error


Page 3

  • Correct Answer: D

    Solution :

                       The image of object at infinity should be formed at 100 cm from the eye                    \[\frac{1}{f}=\frac{1}{\infty }-\frac{1}{100}=-\frac{1}{100}\]                    So the power \[=\frac{-100}{100}=-\ 1\]D            (Distance is given in cm but \[P=\frac{1}{f}\] in metres)

warning Report Error


Page 4

  • Correct Answer: B

    Solution :

                       For improving far point, concave lens is required and for this concave lens \[u=\infty ,\ \ v=-\ 30\ cm\]                    So \[\frac{1}{f}=\frac{1}{-30}-\frac{1}{\infty }\Rightarrow f=-\ 30\ cm\]            for near point \[\frac{1}{-30}=\frac{1}{-15}-\frac{1}{u}\Rightarrow u=-\ 30\ cm\]

warning Report Error


Page 5

  • Correct Answer: C

    Solution :

                       For myopic eye f = ? (defected far point)            \[\Rightarrow f=-\,40\,cm\]  Þ \[P=\frac{100}{-40}=-\,2.5\,D\]

warning Report Error


Page 6

  • Correct Answer: C

    Solution :

                       For lens u = want?s to see \[=-\,60\,cm\] v = can see \[=-\,10\,cm\] \[\therefore \frac{1}{f}=\frac{1}{v}-\frac{1}{u}\]\[\Rightarrow \frac{1}{f}=\frac{1}{-10}-\frac{1}{(-60)}\]\[\Rightarrow f=-\,12\,cm\]

warning Report Error


Page 7

  • Correct Answer: B

    Solution :

               Focal length = ? (Detected far point)

warning Report Error


Page 8

  • Correct Answer: C

    Solution :

                       In this case, for seeing distant objects the far point is 40 cm. Hence the required focal length is                    \[f=-\ d\](distance of far point) = ? 40 cm            Power \[P=\frac{100}{f}cm=\frac{100}{-40}=-\ 2.5\ D\]

warning Report Error


Page 9

  • Correct Answer: B

    Solution :

warning Report Error


Page 10

  • Correct Answer: A

    Solution :

warning Report Error


Page 11

  • Correct Answer: A

    Solution :

warning Report Error


Page 12

  • Correct Answer: A

    Solution :

                       For viewing far objects, concave lenses are used and for concave lens u = wants to see \[=-\,60\,cm\]; v = can see\[=-\,15\,cm\] so from \[\frac{1}{f}=\frac{1}{v}-\frac{1}{u}\]\[\Rightarrow f=-\,20\,cm\].

warning Report Error


Page 13

  • Correct Answer: D

    Solution :

      

warning Report Error


Page 14

  • Correct Answer: A

    Solution :

               In short sightedness, the focal length of eye lens decreases and so the power of eye lens increases.

warning Report Error


Page 15

  • Correct Answer: D

    Solution :

               Colour blindness is a genetic disease and still cannot be cured.

warning Report Error


Page 16

  • Correct Answer: C

    Solution :

               Convexity to lens changes by the pressure applied by ciliary muscles.

warning Report Error


Page 17

  • Correct Answer: B

    Solution :

                       \[f=-\ d=-\ 100\ cm=-\ 1\ m\]            \[\therefore P=\frac{1}{f}=\frac{1}{-1}=-\ 1\ D\]

warning Report Error


Page 18

  • Correct Answer: C

    Solution :

                       For correcting myopia, concave lens is used and for lens. u = wants to see \[=-\,50\,cm\] v = can see \[=-\,25\,cm\]                    From \[\frac{1}{f}=\frac{1}{v}-\frac{1}{u}\]\[\Rightarrow \frac{1}{f}=\frac{1}{-25}-\frac{1}{(-50)}\]\[\Rightarrow f=-\,50\,cm\]            So power \[P=\frac{100}{f}=\frac{100}{-50}=-\,2\,D\]

warning Report Error


Page 19

  • Correct Answer: C

    Solution :

warning Report Error


Page 20

  • Correct Answer: C

    Solution :

               \[f=-\ d=-\ 60\ cm\]

warning Report Error


Page 21

  • Correct Answer: B

    Solution :

                       For correcting the near point, required focal length                    \[f=\frac{50\times 25}{(50-25)}=50\,cm\]                    So power \[P=\frac{100}{50}=+\,2\,D\]                    For correcting the far point, required focal length                    \[f=-\,(defected\ far\ point)=-\,3\,m\]            \[\therefore P=-\frac{1}{3}D=-\,0.33\,D\]

warning Report Error


Page 22

  • Correct Answer: B

    Solution :

                       Negative power is given, so defect of eye is nearsigntedness Also defected far point \[=-f=-\frac{1}{p}=-\frac{100}{(-2.5)}=40\,cm\]

warning Report Error


Page 23

  • Correct Answer: A

    Solution :

               In myopia, eye ball may be elongated so, light rays focussed before the retina.

warning Report Error


Page 24

  • Correct Answer: C

    Solution :

warning Report Error


Page 25

  • Correct Answer: D

    Solution :

               \[P=\frac{1}{f}=\frac{1}{-(defected\ far\ point)}=-\frac{1}{2}\]\[=-\,0.5\,D\]

warning Report Error


Page 26

  • Correct Answer: A

    Solution :

               Resolving limit of eye is one minute (1').

warning Report Error