How do the Golgi apparatus the endoplasmic reticulum and the ribosomes all work together

*Reference is also in this collection.

Anelli T, Alessio M, Mezghrani A, Simmen T, Talamo F, Bachi A, Sitia R 2002. ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J 21: 835–844 [PMC free article] [PubMed] [Google Scholar]

Anelli T, Alessio M, Bachi A, Bergamelli L, Bertoli G, Camerini S, Mezghrani A, Ruffato E, Simmen T, Sitia R 2003. Thiol-mediated protein retention in the endoplasmic reticulum: The role of ERp44. EMBO J 22: 5015–5022 [PMC free article] [PubMed] [Google Scholar]

Au CE, Bell AW, Gilchrist A, Hiding J, Nilsson T, Bergeron JJ 2007. Organellar proteomics to create the cell map. Curr Opin Cell Biol 19: 376–385 [PubMed] [Google Scholar]

Balch WE, Dunphy WG, Braell WA, Rothman JE 1984. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39: 405–416 [PubMed] [Google Scholar]

Baudhuin P, Evrard P, Berthet J 1967. Electron microscopic examination of subcellular fractions. I. The preparation of representative samples from suspensions of particles. J Cell Biol 32: 181–191 [PMC free article] [PubMed] [Google Scholar]

Bause E, Schweden J, Gross A, Orthen B 1989. Purification and characterization of trimming glucosidase I from pig liver. Eur J Biochem 183: 661–669 [PubMed] [Google Scholar]

Bell AW, Deutsch EW, Au CE, Kearney RE, Beavis R, Sechi S, Nilsson T, Bergeron JJ 2009. A HUPO test sample study reveals common problems in mass spectrometry-based proteomics. Nat Methods 6: 423–430 [PMC free article] [PubMed] [Google Scholar]

Bergeron JJ, Hallett M 2007. Peptides you can count on. Nat Biotechnol 25: 61–62 [PubMed] [Google Scholar]

Bergeron JJ, Au CE, Desjardins M, McPherson PS, Nilsson T 2010. Cell biology through proteomics—ad astra per alia porci. Trends Cell Biol 20: 337–345 [PubMed] [Google Scholar]

Blobel G, Dobberstein B 1975. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67: 835–851 [PMC free article] [PubMed] [Google Scholar]

Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boismenu D, et al. 2004. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci 101: 3833–3838 [PMC free article] [PubMed] [Google Scholar]

Blouin A, Bolender RP, Weibel ER 1977. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 72: 441–455 [PMC free article] [PubMed] [Google Scholar]

Bonfanti L, Mironov AA Jr, Martinez-Menarguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A 1998. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: Evidence for cisternal maturation. Cell 95: 993–1003 [PubMed] [Google Scholar]

Bruni C, Porter KR 1965. The fine structure of the parenchymal cell of the normal rat liver: I. General observations. Am J Pathol 46: 691–755 [PMC free article] [PubMed] [Google Scholar]

Burns DM, Touster O 1982. Purification and characterization of glucosidase II, an endoplasmic reticulum hydrolase involved in glycoprotein biosynthesis. J Biol Chem 257: 9990–10000 [PubMed] [Google Scholar]

Campbell-Valois FX, Trost M, Chemali M, Dill BD, Laplante A, Duclos S, Sadeghi S, Rondeau C, Morrow IC, Bell C, et al. 2012. Quantitative proteomics reveals that only a subset of the endoplasmic reticulum contributes to the phagosome. Mol Cell Proteomics 11: M111.016378. [PMC free article] [PubMed] [Google Scholar]

Cebrian I, Visentin G, Blanchard N, Jouve M, Bobard A, Moita C, Enninga J, Moita LF, Amigorena S, Savina A 2011. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147: 1355–1368 [PubMed] [Google Scholar]

Chen Y, Hu D, Yabe R, Tateno H, Qin SY, Matsumoto N, Hirabayashi J, Yamamoto K 2011. Role of malectin in Glc(2)Man(9)GlcNAc(2)-dependent quality control of α1-antitrypsin. Mol Biol Cell 22: 3559–3570 [PMC free article] [PubMed] [Google Scholar]

Cheng H, Leblond CP 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 141: 537–561 [PubMed] [Google Scholar]

Chevet E, Smirle J, Cameron PH, Thomas DY, Bergeron JJ 2010. Calnexin phosphorylation: Linking cytoplasmic signalling to endoplasmic reticulum lumenal functions. Semin Cell Dev Biol 21: 486–490 [PubMed] [Google Scholar]

Christianson JC, Shaler TA, Tyler RE, Kopito RR 2008. OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10: 272–282 [PMC free article] [PubMed] [Google Scholar]

Claude A, Zhao BP, Kuziemsky CE, Dahan S, Berger SJ, Yan JP, Armold AD, Sullivan EM, Melancon P 1999. GBF1: A novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. J Cell Biol 146: 71–84 [PMC free article] [PubMed] [Google Scholar]

Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M 2009. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184: 159–172 [PMC free article] [PubMed] [Google Scholar]

Cortini M, Sitia R 2010. ERp44 and ERGIC-53 synergize in coupling efficiency and fidelity of IgM polymerization and secretion. Traffic 11: 651–659 [PubMed] [Google Scholar]

Cox B, Kislinger T, Emili A 2005. Integrating gene and protein expression data: Pattern analysis and profile mining. Methods 35: 303–314 [PubMed] [Google Scholar]

Dahan S, Ahluwalia JP, Wong L, Posner BI, Bergeron JJ 1994. Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus saccular distensions and endosomes. J Cell Biol 127: 1859–1869 [PMC free article] [PubMed] [Google Scholar]

Das RC, Heath EC 1980. Dolichyldiphosphoryloligosaccharide–protein oligosaccharyltransferase; solubilization, purification, and properties. Proc Natl Acad Sci 77: 3811–3815 [PMC free article] [PubMed] [Google Scholar]

De Duve C, Beaufay H 1981. A short history of tissue fractionation. J Cell Biol 91: 293s–299s [PMC free article] [PubMed] [Google Scholar]

Dejgaard K, Theberge JF, Heath-Engel H, Chevet E, Tremblay ML, Thomas DY 2010. Organization of the Sec61 translocon, studied by high resolution native electrophoresis. J Proteome Res 9: 1763–1771 [PubMed] [Google Scholar]

De Lorenzo F, Goldberger RF, Steers E Jr, Givol D, Anfinsen B 1966. Purification and properties of an enzyme from beef liver which catalyzes sulfhydryl-disulfide interchange in proteins. J Biol Chem 241: 1562–1567 [PubMed] [Google Scholar]

Dunkley TP, Watson R, Griffin JL, Dupree P, Lilley KS 2004. Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3: 1128–1134 [PubMed] [Google Scholar]

Ellgaard L, Helenius A 2003. Quality control in the endoplasmic reticulum. Nature Rev Mol Cell Biol 4: 181–191 [PubMed] [Google Scholar]

English AR, Zurek N, Voeltz GK 2009. Peripheral ER structure and function. Curr Opin Cell Biol 21: 596–602 [PMC free article] [PubMed] [Google Scholar]

Ernster L, Siekevitz P, Palade GE 1962. Enzyme-structure relationships in the endoplasmic reticulum of rat liver: A Morphological and Biochemical Study. J Cell Biol 15: 541–562 [PMC free article] [PubMed] [Google Scholar]

Estabrook RW, Franklin MR, Cohen B, Shigamatzu A, Hildebrandt AG 1971. Biochemical and genetic factors influencing drug metabolism. Influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism 20: 187–199 [PubMed] [Google Scholar]

Foster LJ, de Hoog CL, Zhang Y, Xie X, Mootha VK, Mann M 2006. A mammalian organelle map by protein correlation profiling. Cell 125: 187–199 [PubMed] [Google Scholar]

Fraldi A, Zito E, Annunziata F, Lombardi A, Cozzolino M, Monti M, Spampanato C, Ballabio A, Pucci P, Sitia R, et al. 2008. Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44. Hum Mol Genet 17: 2610–2621 [PubMed] [Google Scholar]

Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y 1988. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263: 18545–18552 [PubMed] [Google Scholar]

Gagnon E, Duclos S, Rondeau C, Chevet E, Cameron PH, Steele-Mortimer O, Paiement J, Bergeron JJ, Desjardins M 2002. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110: 119–131 [PubMed] [Google Scholar]

Galli C, Bernasconi R, Solda T, Calanca V, Molinari M 2011. Malectin participates in a backup glycoprotein quality control pathway in the mammalian ER. PLoS ONE 6: e16304. [PMC free article] [PubMed] [Google Scholar]

Gannon J, Bergeron JJ, Nilsson T 2011. Golgi and related vesicle proteomics: Simplify to identify. Cold Spring Harb Perspect Biol 3: a005421. [PMC free article] [PubMed] [Google Scholar]

* Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P 2013. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a013169 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Geiger T, Wehner A, Schaab C, Cox J, Mann M 2012. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11: M111.014050 [PMC free article] [PubMed] [Google Scholar]

Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJ, Hallett M, et al. 2006. Quantitative proteomics analysis of the secretory pathway. Cell 127: 1265–1281 [PubMed] [Google Scholar]

Gonzalez DS, Karaveg K, Vandersall-Nairn AS, Lal A, Moremen KW 1999. Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J Biol Chem 274: 21375–21386 [PubMed] [Google Scholar]

Grasse PP 1957. Ultrastructure, polarity and reproduction of Golgi apparatus. C R Hebd Seances Acad Sci 245: 1278–1281 (in French) [PubMed] [Google Scholar]

Graumann J, Scheltema RA, Zhang Y, Cox J, Mann M 2012. A framework for intelligent data acquisition and real-time database searching for shotgun proteomics. Mol Cell Proteomics 11: M111.013185. [PMC free article] [PubMed] [Google Scholar]

Groisman B, Shenkman M, Ron E, Lederkremer GZ 2011. Mannose trimming is required for delivery of a glycoprotein from EDEM1 to XTP3-B and to late endoplasmic reticulum-associated degradation steps. J Biol Chem 286: 1292–1300 [PMC free article] [PubMed] [Google Scholar]

Haas IG, Wabl M 1983. Immunoglobulin heavy chain binding protein. Nature 306: 387–389 [PubMed] [Google Scholar]

Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Maziere AM, Vieira OV, Mattjus P, Klumperman J, van Meer G, Sprong H 2007. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179: 101–115 [PMC free article] [PubMed] [Google Scholar]

Hammond C, Braakman I, Helenius A 1994. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci 91: 913–917 [PMC free article] [PubMed] [Google Scholar]

Hettkamp H, Legler G, Bause E 1984. Purification by affinity chromatography of glucosidase I, an endoplasmic reticulum hydrolase involved in the processing of asparagine-linked oligosaccharides. Eur J Biochem 142: 85–90 [PubMed] [Google Scholar]

Hortsch M, Avossa D, Meyer DI 1986. Characterization of secretory protein translocation: Ribosome-membrane interaction in endoplasmic reticulum. J Cell Biol 103: 241–253 [PMC free article] [PubMed] [Google Scholar]

Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, Laplante A, Princiotta MF, Thibault P, Sacks D, Desjardins M 2003. Phagosomes are competent organelles for antigen cross-presentation. Nature 425: 402–406 [PubMed] [Google Scholar]

Jamieson JD, Palade GE 1967. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol 34: 577–596 [PMC free article] [PubMed] [Google Scholar]

Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS, et al. 2009. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323: 1693–1697 [PMC free article] [PubMed] [Google Scholar]

Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT, et al. 2006. Global survey of organ and organelle protein expression in mouse: Combined proteomic and transcriptomic profiling. Cell 125: 173–186 [PubMed] [Google Scholar]

Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fassler R, Mann M 2008. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134: 353–364 [PubMed] [Google Scholar]

Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T 1999. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J 18: 4935–4948 [PMC free article] [PubMed] [Google Scholar]

Lanoix J, Ouwendijk J, Stark A, Szafer E, Cassel D, Dejgaard K, Weiss M, Nilsson T 2001. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: A role for ArfGAP1. J Cell Biol 155: 1199–1212 [PMC free article] [PubMed] [Google Scholar]

Lilley BN, Ploegh HL 2004. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429: 834–840 [PubMed] [Google Scholar]

Lilley BN, Ploegh HL 2005. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci 102: 14296–14301 [PMC free article] [PubMed] [Google Scholar]

Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD 1989. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER. Cell 56: 801–813 [PMC free article] [PubMed] [Google Scholar]

* Lord C, Ferro-Novick S, Miller EA 2013. The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the Golgi. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a013367 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Loud AV 1968. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol 37: 27–46 [PMC free article] [PubMed] [Google Scholar]

Ludwig C, Claassen M, Schmidt A, Aebersold R 2012. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry. Mol Cell Proteomics 11: M111.013987. [PMC free article] [PubMed] [Google Scholar]

Lynes EM, Bui M, Yap MC, Benson MD, Schneider B, Ellgaard L, Berthiaume LG, Simmen T 2012. Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J 31: 457–470 [PMC free article] [PubMed] [Google Scholar]

Mariappan M, Radhakrishnan K, Dierks T, Schmidt B, von Figura K 2008. ERp44 mediates a thiol-independent retention of formylglycine-generating enzyme in the endoplasmic reticulum. J Biol Chem 283: 6375–6383 [PubMed] [Google Scholar]

Martinez-Menarguez JA, Geuze HJ, Slot JW, Klumperman J 1999. Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98: 81–90 [PubMed] [Google Scholar]

Melkonian M, Becker B, Becker D 1991. Scale formation in algae. J Electron Microsc Tech 17: 165–178 [PubMed] [Google Scholar]

Miesenbock G, Rothman JE 1995. The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J Cell Biol 129: 309–319 [PMC free article] [PubMed] [Google Scholar]

Misumi Y, Miki K, Takatsuki A, Tamura G, Ikehara Y 1986. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem 261: 11398–11403 [PubMed] [Google Scholar]

Molinari M, Calanca V, Galli C, Lucca P, Paganetti P 2003. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299: 1397–1400 [PubMed] [Google Scholar]

Mori H, Christensen AK 1980. Morphometric analysis of Leydig cells in the normal rat testis. J Cell Biol 84: 340–354 [PMC free article] [PubMed] [Google Scholar]

Mosley CA, Taupenot L, Biswas N, Taulane JP, Olson NH, Vaingankar SM, Wen G, Schork NJ, Ziegler MG, Mahata SK, et al. 2007. Biogenesis of the secretory granule: Chromogranin A coiled-coil structure results in unusual physical properties and suggests a mechanism for granule core condensation. Biochemistry 46: 10999–11012 [PubMed] [Google Scholar]

Murphy MJ Jr, Bertles JF, Gordon AS 1971. Identifying characteristics of the haematopoietic precursor cell. J Cell Sci 9: 23–47 [PubMed] [Google Scholar]

Nakano A, Luini A 2010. Passage through the Golgi. Curr Opin Cell Biol 22: 471–478 [PubMed] [Google Scholar]

Nilsson T, Pypaert M, Hoe MH, Slusarewicz P, Berger EG, Warren G 1993. Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. J Cell Biol 120: 5–13 [PMC free article] [PubMed] [Google Scholar]

Nilsson T, Au CE, Bergeron JJ 2009. Sorting out glycosylation enzymes in the Golgi apparatus. FEBS Lett 583: 3764–3769 [PubMed] [Google Scholar]

Novikoff PM, Yam A 1978. The cytochemical demonstration of GERL in rat hepatocytes during lipoprotein mobilization. J Histochem Cytochem 26: 1–13 [PubMed] [Google Scholar]

Oda K, Hirose S, Takami N, Misumi Y, Takatsuki A, Ikehara Y 1987. Brefeldin A arrests the intracellular transport of a precursor of complement C3 before its conversion site in rat hepatocytes. FEBS Lett 214: 135–138 [PubMed] [Google Scholar]

Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1: 376–386 [PubMed] [Google Scholar]

Oprins A, Rabouille C, Posthuma G, Klumperman J, Geuze HJ, Slot JW 2001. The ER to Golgi interface is the major concentration site of secretory proteins in the exocrine pancreatic cell. Traffic 2: 831–838 [PubMed] [Google Scholar]

Otte S, Belden WJ, Heidtman M, Liu J, Jensen ON, Barlowe C 2001. Erv41p and Erv46p: New components of COPII vesicles involved in transport between the ER and Golgi complex. J Cell Biol 152: 503–518 [PMC free article] [PubMed] [Google Scholar]

Ou WJ, Cameron PH, Thomas DY, Bergeron JJ 1993. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364: 771–776 [PubMed] [Google Scholar]

Palade GE, Siekevitz P 1956. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol 2: 671–690 [PMC free article] [PubMed] [Google Scholar]

Pan S, Wang S, Utama B, Huang L, Blok N, Estes MK, Moremen KW, Sifers RN 2011. Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell 22: 2810–2822 [PMC free article] [PubMed] [Google Scholar]

Pelletier MF, Marcil A, Sevigny G, Jakob CA, Tessier DC, Chevet E, Menard R, Bergeron JJ, Thomas DY 2000. The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 10: 815–827 [PubMed] [Google Scholar]

Pollock S, Kozlov G, Pelletier MF, Trempe JF, Jansen G, Sitnikov D, Bergeron JJ, Gehring K, Ekiel I, Thomas DY 2004. Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. EMBO J 23: 1020–1029 [PMC free article] [PubMed] [Google Scholar]

Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T 1995. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108: 1617–1627 [PubMed] [Google Scholar]

Reed JR, Backes WL 2012. Formation of P450 · P450 complexes and their effect on P450 function. Pharmacol Ther 133: 299–310 [PMC free article] [PubMed] [Google Scholar]

Reitman ML, Trowbridge IS, Kornfeld S 1982. A lectin-resistant mouse lymphoma cell line is deficient in glucosidase II, a glycoprotein-processing enzyme. J Biol Chem 257: 10357–10363 [PubMed] [Google Scholar]

Saraste J, Kuismanen E 1984. Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell 38: 535–549 [PubMed] [Google Scholar]

Savitz AJ, Meyer DI 1990. Identification of a ribosome receptor in the rough endoplasmic reticulum. Nature 346: 540–544 [PubMed] [Google Scholar]

Schallus T, Jaeckh C, Feher K, Palma AS, Liu Y, Simpson JC, Mackeen M, Stier G, Gibson TJ, Feizi T, et al. 2008. Malectin: A novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell 19: 3404–3414 [PMC free article] [PubMed] [Google Scholar]

Schneider WC, Dalton AJ, Kuff EL, Felix M 1953. Isolation and biochemical function of the Golgi substance. Nature 172: 161–162 [PubMed] [Google Scholar]

Schrag JD, Bergeron JJ, Li Y, Borisova S, Hahn M, Thomas DY, Cygler M 2001. The Structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 8: 633–644 [PubMed] [Google Scholar]

Schrag JD, Procopio DO, Cygler M, Thomas DY, Bergeron JJ 2003. Lectin control of protein folding and sorting in the secretory pathway. Trends Biochem Sci 28: 49–57 [PubMed] [Google Scholar]

Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ 2006. Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition. Mol Cell Proteomics 5: 144–156 [PubMed] [Google Scholar]

Smolka MB, Zhou H, Purkayastha S, Aebersold R 2001. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis. Anal Biochem 297: 25–31 [PubMed] [Google Scholar]

Stolz A, Hilt W, Buchberger A, Wolf DH 2011. Cdc48: A power machine in protein degradation. Trends Biochem Sci 36: 515–523 [PubMed] [Google Scholar]

Szathmary R, Bielmann R, Nita-Lazar M, Burda P, Jakob CA 2005. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol Cell 19: 765–775 [PubMed] [Google Scholar]

Taylor SC, Thibault P, Tessier DC, Bergeron JJ, Thomas DY 2003. Glycopeptide specificity of the secretory protein folding sensor UDP-glucose glycoprotein:glucosyltransferase. EMBO Rep 4: 405–411 [PMC free article] [PubMed] [Google Scholar]

Taylor SC, Ferguson AD, Bergeron JJ, Thomas DY 2004. The ER protein folding sensor UDP-glucose glycoprotein-glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat Struct Mol Biol 11: 128–134 [PubMed] [Google Scholar]

Titorenko VI, Rachubinski RA 1998. Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 18: 2789–2803 [PMC free article] [PubMed] [Google Scholar]

Titorenko VI, Ogrydziak DM, Rachubinski RA 1997. Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol Cell Biol 17: 5210–5226 [PMC free article] [PubMed] [Google Scholar]

Trombetta ES, Parodi AJ 2003. Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19: 649–676 [PubMed] [Google Scholar]

van der Zand A, Gent J, Braakman I, Tabak HF 2012. Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 149: 397–409 [PubMed] [Google Scholar]

von Haller PD, Yi E, Donohoe S, Vaughn K, Keller A, Nesvizhskii AI, Eng J, Li XJ, Goodlett DR, Aebersold R, et al. 2003. The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: II. Evaluation of tandem mass spectrometry methodologies for large-scale protein analysis, and the application of statistical tools for data analysis and interpretation. Mol Cell Proteomics 2: 428–442 [PubMed] [Google Scholar]

Wahlman J, DeMartino GN, Skach WR, Bulleid NJ, Brodsky JL, Johnson AE 2007. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129: 943–955 [PMC free article] [PubMed] [Google Scholar]

Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R 2012. COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14: 20–28 [PubMed] [Google Scholar]

Zapun A, Petrescu SM, Rudd PM, Dwek RA, Thomas DY, Bergeron JJ 1997. Conformation-independent binding of monoglucosylated ribonuclease B to calnexin. Cell 88: 29–38 [PubMed] [Google Scholar]

Zapun A, Darby NJ, Tessier DC, Michalak M, Bergeron JJ, Thomas DY 1998. Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 273: 6009–6012 [PubMed] [Google Scholar]

Zeiler M, Straube WL, Lundberg E, Uhlen M, Mann M 2012. A protein epitope signature tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Mol Cell Proteomics 11: O111.009613. [PMC free article] [PubMed] [Google Scholar]


Page 2

How do the Golgi apparatus the endoplasmic reticulum and the ribosomes all work together

Quantitative proteomics of 20 recombinant human proteins. Frequency of tandem mass spectra assigned to tryptic peptides in 20 recombinant human proteins (gene symbol). The results are shown as a peptide heat map representation for each of the 20 proteins. Each protein was present at equimolar abundance in the mixture. Intensity of red indicates abundance of tryptic peptides characterized by tandem mass spectrometry. Blue represents a tryptic peptide of 1250 Da. Each of the 20 proteins contained one or more peptides of this mass, but of a different primary sequence. Abscissa scale indicates the number of amino acid residues. (From Bell et al. 2009; reprinted, with permission, from the author and Nature Publishing Group © 2009.)

  • How do the Golgi apparatus the endoplasmic reticulum and the ribosomes all work together
  • How do the Golgi apparatus the endoplasmic reticulum and the ribosomes all work together
  • How do the Golgi apparatus the endoplasmic reticulum and the ribosomes all work together
  • How do the Golgi apparatus the endoplasmic reticulum and the ribosomes all work together
  • How do the Golgi apparatus the endoplasmic reticulum and the ribosomes all work together

Click on the image to see a larger version.