In patients with schizophrenia, what two parts of the brain are larger than normal?

  1. Johnstone EC et al (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2(7992):924–926

    PubMed  Article  CAS  Google Scholar 

  2. Narr KL et al (2006) Regional specificity of cerebrospinal fluid abnormalities in first episode schizophrenia. Psychiatry Res 146(1):21–33

    PubMed  Article  Google Scholar 

  3. Wright IC et al (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157(1):16–25

    PubMed  CAS  Google Scholar 

  4. Lawrie SM et al (2008) Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr Bull 34(2):330–340

    PubMed  Article  Google Scholar 

  5. Wood SJ et al (2008) Progressive changes in the development toward schizophrenia: studies in subjects at increased symptomatic risk. Schizophr Bull 34(2):322–329

    PubMed  Article  Google Scholar 

  6. Hulshoff Pol HE, Kahn RS (2008) What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 34(2):354–366

    PubMed  Article  Google Scholar 

  7. Buchsbaum MS et al (2003) Caudate and putamen volumes in good and poor outcome patients with schizophrenia. Schizophr Res 64(1):53–62

    PubMed  Article  Google Scholar 

  8. Brickman AM et al (2006) Internal capsule size in good and poor outcome schizophrenia. J Neuropsychiatry Clin Neurosci 18:364–376

    Google Scholar 

  9. Wobrock T et al (2009) Internal capsule size associated with outcome in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 259(5):278–283

    PubMed  Article  Google Scholar 

  10. Kemether EM et al (2003) Magnetic resonance imaging of mediodorsal, pulvinar, and centromedian nuclei of the thalamus in patients with schizophrenia. Arch Gen Psychiatry 60(10):983–991

    PubMed  Article  Google Scholar 

  11. Gaser C et al (2004) Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am J Psychiatry 161(1):154–156

    PubMed  Article  Google Scholar 

  12. Chance SA, Esiri MM, Crow TJ (2003) Ventricular enlargement in schizophrenia: a primary change in the temporal lobe? Schizophr Res 62(1–2):123–131

    PubMed  Article  Google Scholar 

  13. Takahashi T et al (2008) Association between absence of the adhesio interthalamica and amygdala volume in schizophrenia. Psychiatry Res 162(2):101–111

    PubMed  Article  Google Scholar 

  14. Andreasen N, Flaum M, Arndt S (1992) The comprehensive assessment of symptoms and history (CASH): an instrument for assessing diagnosis and psychopathology. Arch Gen Psychiatry 49:615–623

  15. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    PubMed  Article  CAS  Google Scholar 

  16. Overall J, Gorham D (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Google Scholar 

  17. Hazlett EA et al (2008) Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients. Schizophr Res 101:111–123

    Google Scholar 

  18. Mitelman SA et al (2006) Correlations between volumes of the pulvinar, centromedian, and mediodorsal nuclei and cortical Brodmann’s areas in schizophrenia. Neurosci Lett 392(1–2):16–21

    PubMed  Article  CAS  Google Scholar 

  19. Mitelman SA et al (2007) A comprehensive assessment of gray and white matter volumes and their relationship to outcome and severity in schizophrenia. NeuroImage 37(2):449–462

    PubMed  Article  Google Scholar 

  20. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    PubMed  Article  CAS  Google Scholar 

  21. Jenkinson M et al (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2):825–841

    PubMed  Article  Google Scholar 

  22. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    PubMed  Article  Google Scholar 

  23. Katz M et al (1996) Correlational patterns of cerebral glucose metabolism in never-medicated schizophrenics. Neuropsychobiology 33:1–11

    PubMed  Article  CAS  Google Scholar 

  24. Buchsbaum MS et al (2002) Differential metabolic rates in prefrontal and temporal Brodmann areas in schizophrenia and schizotypal personality disorder. Schizophr Res 54(1–2):141–150

    PubMed  Article  Google Scholar 

  25. Mitelman SA et al (2005) Correlations between MRI-assessed volumes of the thalamus and cortical Brodmann’s areas in schizophrenia. Schizophr Res 75(2–3):265–281

    PubMed  Article  Google Scholar 

  26. Perry R, Oakley A, Perry E (1991) Coronal brain map and dissection guide: localization of Brodman areas in coronal sections

  27. Stein DJ et al (1998) Greater metabolic rate decreases in hippocampal formation and proisocortex than in neocortex in Alzheimer’s disease. Neuropsychobiology 37(1):10–19

    PubMed  Article  CAS  Google Scholar 

  28. Mitelman S et al (2003) MRI assessment of gray and white matter distribution in Brodmann areas of the cortex in patients with schizophrenia with good and poor outcomes. Am J Psychiatry 160:2154–2168

    PubMed  Article  Google Scholar 

  29. Hazlett EA et al (2004) Regional glucose metabolism within cortical Brodmann areas in healthy individuals and autistic patients. Neuropsychobiology 49(3):115–125

    PubMed  Article  CAS  Google Scholar 

  30. Mitelman SA et al (2005) Cortical intercorrelations of frontal area volumes in schizophrenia. Neuroimage 27(4):753–770

    PubMed  Article  Google Scholar 

  31. Buchsbaum MS et al (2007) Relative glucose metabolic rate higher in White Matter in Schizophrenia. Am J Psychiatry 164:1072–1081

    Google Scholar 

  32. Byne W et al (2001) Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 58(2):133–140

    PubMed  Article  CAS  Google Scholar 

  33. Brickman AM et al (2003) Striatal size, glucose metabolic rate, and verbal learning in normal aging. Brain Res Cogn Brain Res 17(1):106–116

    PubMed  Article  CAS  Google Scholar 

  34. Kullback S (1967) On testing correlation matrices. Appl Stat 16:80–85

    Article  Google Scholar 

  35. Woodruff PW et al (1997) Structural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation. Psychol Med 27(6):1257–1266

    PubMed  Article  CAS  Google Scholar 

  36. Portas C et al (1998) Volumetric evaluation of the Thalamus in Schizophrenic male patients using magnetic resonance imaging. Biol Psychiatry 43:649–659

    PubMed  Article  CAS  Google Scholar 

  37. Bullmore ET et al (1998) Does dysplasia cause anatomical dysconnectivity in schizophrenia? Schizophr Res 30(2):127–135

    PubMed  Article  CAS  Google Scholar 

  38. Okugawa G, Tamagaki C, Agartz I (2007) Frontal and temporal volume size of grey and white matter in patients with schizophrenia: an MRI parcellation study. Eur Arch Psychiatry Clin Neurosci 257(5):304–307

    PubMed  Article  Google Scholar 

  39. Spalletta G et al (2010) Cortico-subcortical underpinnings of narrative processing impairment in schizophrenia. Psychiatry Res 182(1):77–80

    PubMed  Article  Google Scholar 

  40. Schultz CC et al (2010) Complex pattern of cortical thinning in schizophrenia: Results from an automated surface based analysis of cortical thickness. Psychiatry Res 182:134–140

    Google Scholar 

  41. Wieshmann UC et al (2000) Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour. J Neurol Neurosurg Psychiatry 68(4):501–503

    PubMed  Article  CAS  Google Scholar 

  42. Assaf Y et al (2006) Diffusion tensor imaging in hydrocephalus: initial experience. Ajnr 27(8):1717–1724

    PubMed  CAS  Google Scholar 

  43. Spalletta G et al (2010) Cortico-subcortical underpinnings of narrative processing impairment in schizophrenia. Psychiatry Res 182(1):77–80

    Google Scholar 

  44. Sowell ER et al (2003) Mapping cortical change across the human life span. Nat Neurosci 6(3):309–315

    PubMed  Article  CAS  Google Scholar 

  45. Meduri M et al (2010) Morphometrical and morphological analysis of lateral ventricles in schizophrenia patients versus healthy controls. Psychiatry Res 183(1):52–58

    Google Scholar 

  46. Sowell ER et al (2007) Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral Cortex (New York) 17(7):1550–1560

    Article  Google Scholar 

  47. Schultz CC et al (2010) Psychopathological correlates of the entorhinal cortical shape in schizophrenia. Eur Arch Psychiatry Clin Neurosci 260(4):351–358

    Google Scholar 

  48. Mitelman SA et al (2009) Poor outcome in chronic schizophrenia is associated with progressive loss of volume of the putamen. Schizophr Res 113(2–3):241–245

    PubMed  Article  Google Scholar 


Page 2

From: Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia

  Patients Sample 1 Patients Sample 2
Controls Statistic P value Controls Statistic P value
n 64 56    19 32   
Age (SD) 33.7 (17.4) 36.8 (11.9) t118 = 1.15 0.25 32.1 (10.95) 31.1 (8.26) t49 = 0.95 0.72
Gender (F:M) 17:47 21:35 χ2 = 1.65 0.20 7:12 12:20 χ2 < 0.00 0.96
Handedness (R:L:A) 55:5:3 51:4:1 χ2 = 0.43 0.51 14:2:3 27:4 χ2 = 1.44 0.23
Education (years) 12.8 (2.5) 16.27 (2.5) t83 = 6.27 <0.05 13 (1.79) 18.5 (10.5) t30 = 1.25 0.22
Age at onset 24.4 (7)     NAa    
Duration of illness (years) 19.1 (16)     NAa    
Total volume (cm3) 1,191,000 (90,000) 1,220,000 (115,000) t120 = 1.44 0.15 1,204,000 (125,000) 1,172,000 (106,000) t49 = −0.95 0.34
Cortical gray matter 356 (40) 384 (34) t120 = 4.19 <0.001 434 (58) 432 (38) t49 = −0.17 0.87
Cortical white matter 325 (47) 326 (45) t120 = 0.05 0.96 297 (39) 290 (36) t49 = −0.58 0.56
Lateral ventricles 22 (12) 19 (8) t120 = −1.23 0.22 23 (17) 15 (11) t23 = −1.35 0.19

  1. aNot determined in this sample