Which of the following may help older adults compensate for declines in processing speed?

  1. WHO. Ageing and Health (WHO, 2018).

    Google Scholar 

  2. World Health Organization. Dementia (WHO, 2017).

    Google Scholar 

  3. Cimler, R., Maresova, P., Kuhnova, J. & Kuca, K. Predictions of Alzheimer’s disease treatment and care costs in European countries. PLoS ONE 14, e0210958 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cleveland, M. L. Preserving cognition, preventing dementia. Clin. Geriatr. Med. 36, 585–599 (2020).

    Article  PubMed  Google Scholar 

  5. Lamar, M., Boots, E. A., Arfanakis, K., Barnes, L. L. & Schneider, J. A. Common brain structural alterations associated with cardiovascular disease risk factors and Alzheimer’s dementia: Future directions and implications. Neuropsychol. Rev. https://doi.org/10.1007/s11065-020-09460-6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet 396, 413–446 (2020).

    Article  Google Scholar 

  7. Dyer, S. M., Harrison, S. L., Laver, K., Whitehead, C. & Crotty, M. An overview of systematic reviews of pharmacological and non-pharmacological interventions for the treatment of behavioral and psychological symptoms of dementia. Int. Psychogeriatr. 30, 295–309 (2018).

    Article  PubMed  Google Scholar 

  8. Abraha, I. et al. Systematic review of systematic reviews of non-pharmacological interventions to treat behavioural disturbances in older patients with dementia. The SENATOR-OnTop series. BMJ Open 7, e012759 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nouchi, R. et al. Brain training game boosts executive functions, working memory and processing speed in the young adults: A randomized controlled trial. PLoS ONE 8, e55518 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gates, N. J. et al. Computerised cognitive training for 12 or more weeks for maintaining cognitive function in cognitively healthy people in late life. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD012277.pub3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shah, T. M., Weinborn, M., Verdile, G., Sohrabi, H. R. & Martins, R. N. Enhancing cognitive functioning in healthly older adults: A systematic review of the clinical significance of commercially available computerized cognitive training in preventing cognitive decline. Neuropsychol. Rev. 27, 62–80 (2017).

    Article  PubMed  Google Scholar 

  12. Bonnechère, B., Langley, C. & Sahakian, B. J. The use of commercial computerised cognitive games in older adults: A meta-analysis. Sci. Rep. https://doi.org/10.1038/s41598-020-72281-3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gates, N. J. et al. Computerised cognitive training for preventing dementia in people with mild cognitive impairment. Cochrane Database Syst. Rev. 3, CD012279 (2019).

    PubMed  Google Scholar 

  14. Edwards, J. D. et al. Speed of processing training results in lower risk of dementia. Alzheimers Dement (N. Y.) 3, 603–611 (2017).

    Article  Google Scholar 

  15. Bonnechère, B. et al. Age-associated capacity to progress when playing Cognitive Mobile Games: Ecological retrospective observational study. JMIR Serious Games 8, e17121 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bonnechère, B. et al. The use of mobile games to assess cognitive function of elderly with and without cognitive impairment. J. Alzheimers Dis. 64, 1285–1293 (2018).

    Article  PubMed  Google Scholar 

  17. Bettio, L. E. B., Rajendran, L. & Gil-Mohapel, J. The effects of aging in the hippocampus and cognitive decline. Neurosci. Biobehav. Rev. 79, 66–86 (2017).

    Article  PubMed  Google Scholar 

  18. Norris, J. E., McGeown, W. J., Guerrini, C. & Castronovo, J. Aging and the number sense: Preserved basic non-symbolic numerical processing and enhanced basic symbolic processing. Front. Psychol. https://doi.org/10.3389/fpsyg.2015.00999 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Johari, K., den Ouden, D.-B. & Behroozmand, R. Effects of aging on temporal predictive mechanisms of speech and hand motor reaction time. Aging Clin. Exp. Res. 30, 1195–1202 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martin, R. C. et al. Loss of calculation abilities in patients with mild and moderate Alzheimer disease. Arch. Neurol. 60, 1585 (2003).

    Article  PubMed  Google Scholar 

  21. Cappelletti, M., Didino, D., Stoianov, I. & Zorzi, M. Number skills are maintained in healthy ageing. Cogn. Psychol. 69, 25–45 (2014).

    Article  PubMed  Google Scholar 

  22. Vogel, A., Salem, L. C., Andersen, B. B. & Waldemar, G. Differences in quantitative methods for measuring subjective cognitive decline—Results from a prospective memory clinic study. Int. Psychogeriatr. 28, 1513–1520 (2016).

    Article  PubMed  Google Scholar 

  23. Rizeq, J., Flora, D. B. & Toplak, M. E. Changing relations among cognitive abilities across development: Implications for measurement and research. Clin. Neuropsychol. 31, 1353–1374 (2017).

    Article  PubMed  Google Scholar 

  24. Li, T. et al. Cognitive training can reduce the rate of cognitive aging: A neuroimaging cohort study. BMC Geriatr. 16, 12 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. van de Vijver, I., Ridderinkhof, K. R. & de Wit, S. Age-related changes in deterministic learning from positive versus negative performance feedback. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 22, 595–619 (2015).

    Article  PubMed  Google Scholar 

  26. Raz, N. Decline and compensation in aging brain and cognition: Promises and constraints. Preface. Neuropsychol. Rev. 19, 411–414 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. McNab, F. et al. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323, 800–802 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Olesen, P. J., Westerberg, H. & Klingberg, T. Increased prefrontal and parietal activity after training of working memory. Nat. Neurosci. 7, 75–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Klingberg, T. Training and plasticity of working memory. Trends Cogn. Sci. (Regul. Ed.) 14, 317–324 (2010).

    Article  Google Scholar 

  30. Orrell, M. & Sahakian, B. Education and dementia. BMJ 310, 951–952 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, D. C. & Reuter-Lorenz, P. The adaptive brain: Aging and neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–196 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Park, D. C. & Bischof, G. N. The aging mind: Neuroplasticity in response to cognitive training. Dialogues Clin. Neurosci. 15, 109–119 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. van Balkom, T. D., van den Heuvel, O. A., Berendse, H. W., van der Werf, Y. D. & Vriend, C. The effects of cognitive training on brain network activity and connectivity in aging and neurodegenerative diseases: A systematic review. Neuropsychol. Rev. 30, 267–286 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mitchell, M. B. et al. Cognitively stimulating activities: Effects on cognition across four studies with up to 21 years of longitudinal data. J. Aging Res. 2012, 461592 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Caviola, S., Gerotto, G. & Mammarella, I. C. Computer-based training for improving mental calculation in third- and fifth-graders. Acta Physiol. (Oxf) 171, 118–127 (2016).

    Google Scholar 

  36. Takeuchi, H. et al. Working Memory training using mental calculation impacts regional gray matter of the frontal and parietal regions. PLoS ONE 6, e23175 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steen-Baker, A. A. et al. The effects of context on processing words during sentence reading among adults varying in age and literacy skill. Psychol. Aging 32, 460–472 (2017).

    Article  PubMed  Google Scholar 

  38. Murphy, D. H. & Castel, A. D. Age-related similarities and differences in the components of semantic fluency: Analyzing the originality and organization of retrieval from long-term memory. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. https://doi.org/10.1080/13825585.2020.1817844 (2020).

    Article  PubMed  Google Scholar 

  39. Eich, T. S., MacKay-Brandt, A., Stern, Y. & Gopher, D. Age-based differences in task switching are moderated by executive control demands. GERONB. https://doi.org/10.1093/geronb/gbw117 (2016).

    Article  Google Scholar 

  40. Eich, T. S. et al. Functional brain and age-related changes associated with congruency in task switching. Neuropsychologia 91, 211–221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jimura, K. & Braver, T. S. Age-related shifts in brain activity dynamics during task switching. Cereb. Cortex 20, 1420–1431 (2010).

    Article  PubMed  Google Scholar 

  42. Matthews, K., Nazroo, J. & Whillans, J. The consequences of self-reported vision change in later-life: Evidence from the English Longitudinal Study of Ageing. Public Health 142, 7–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Malavita, M. S., Vidyasagar, T. R. & McKendrick, A. M. The effect of aging and attention on visual crowding and surround suppression of perceived contrast threshold. Investig. Ophthalmol. Vis. Sci. 58, 860 (2017).

    Article  Google Scholar 

  44. Nyberg, L. et al. Forecasting memory function in aging: Pattern-completion ability and hippocampal activity relate to visuospatial functioning over 25 years. Neurobiol. Aging 94, 217–226 (2020).

    Article  PubMed  Google Scholar 

  45. O’Brien, J. L. et al. Cognitive training and selective attention in the aging brain: An electrophysiological study. Clin. Neurophysiol. 124, 2198–2208 (2013).

    Article  PubMed  Google Scholar 

  46. Mishra, J., Rolle, C. & Gazzaley, A. Neural plasticity underlying visual perceptual learning in aging. Brain Res. 1612, 140–151 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Rhodes, R. E. & Katz, B. Working memory plasticity and aging. Psychol. Aging 32, 51–59 (2017).

    Article  PubMed  Google Scholar 

  48. van der Lee, S. J. et al. The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: A community-based cohort study. Lancet Neurol. 17, 434–444 (2018).

    Article  PubMed  Google Scholar 

  49. Livingston, G. et al. Dementia prevention, intervention, and care. Lancet 390, 2673–2734 (2017).

    Article  PubMed  Google Scholar 

  50. Zheng, F., Yan, L., Zhong, B., Yang, Z. & Xie, W. Progression of cognitive decline before and after incident stroke. Neurology 93, e20–e28 (2019).

    Article  PubMed  Google Scholar 

  51. Stefanidis, K. B., Askew, C. D., Greaves, K. & Summers, M. J. The effect of non-stroke cardiovascular disease states on risk for cognitive decline and dementia: A systematic and meta-analytic review. Neuropsychol. Rev. 28, 1–15 (2018).

    Article  PubMed  Google Scholar 

  52. Li, C.-I. et al. Risk score prediction model for dementia in patients with type 2 diabetes. Eur. J. Neurol. 25, 976–983 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, X. et al. Chronic obstructive pulmonary disease as a risk factor for cognitive dysfunction: A meta-analysis of current studies. J. Alzheimers Dis. 52, 101–111 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Ardila, A. & Rosselli, M. Spontaneous language production and aging: Sex and educational effects. Int. J. Neurosci. 87, 71–78 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Anguera, J. A. et al. Video game training enhances cognitive control in older adults. Nature 501, 97–101 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Golino, M. T. S., Flores Mendoza, C. & Golino, H. F. Effects of cognitive training on cognitive performance of healthy older adults. Span. J. Psychol. 20, E39 (2017).

    Article  PubMed  Google Scholar 

  57. Li, B.-Y. et al. Computerized cognitive training for Chinese mild cognitive impairment patients: A neuropsychological and fMRI study. Neuroimage Clin. 22, 101691 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jin, Y., Jing, M. & Ma, X. Effects of digital device ownership on cognitive decline in a middle-aged and elderly population: Longitudinal observational study. J. Med. Internet Res. 21, e14210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bonnechère, B. et al. Automated functional upper limb evaluation of patients with Friedreich ataxia using serious games rehabilitation exercises. J. Neuroeng. Rehabil. 15, 87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. van der Kolk, N. M. et al. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: A double-blind, randomised controlled trial. Lancet Neurol. 18, 998–1008 (2019).

    Article  PubMed  Google Scholar 

  61. Geddes, M. R. et al. Remote cognitive and behavioral assessment: Report of the Alzheimer Society of Canada Task Force on dementia care best practices for COVID-19. Alzheimer’s Dementia (Amsterdam) 12, e12111 (2020).

    Google Scholar 

  62. Vatansever, D., Wang, S. & Sahakian, B. J. Covid-19 and promising solutions to combat symptoms of stress, anxiety and depression. Neuropsychopharmacology. https://doi.org/10.1038/s41386-020-00791-9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Savulich, G. et al. Cognitive training using a novel Memory Game on an iPad in patients with amnestic mild cognitive impairment (aMCI). Int. J. Neuropsychopharmacol. 20, 624–633 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wolinsky, F. D., Jones, M. P. & Dotson, M. M. Does visual speed of processing training improve health-related quality of life in assisted and independent living communities?: A randomized controlled trial. Innov. Aging 4, 029 (2020).

    Article  Google Scholar 

  65. Koo, B. M. & Vizer, L. M. Mobile technology for cognitive assessment of older adults: A scoping review. Innov. Aging 3, 038 (2019).

    Article  Google Scholar 

  66. Wainer, H. Speed vs reaction time as a measure of cognitive performance. Mem. Cognit. 5, 278–280 (1977).

    Article  CAS  PubMed  Google Scholar 

  67. Kochan, N. A. et al. Is intraindividual reaction time variability an independent cognitive predictor of mortality in old age? Findings from the Sydney Memory and Ageing Study. PLoS ONE 12, e0181719 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Amieva, H., Meillon, C., Proust-Lima, C. & Dartigues, J. F. Is low psychomotor speed a marker of brain vulnerability in late life? Digit symbol substitution test in the prediction of Alzheimer, Parkinson, stroke, disability, and depression. Dement. Geriatr. Cogn. Disord. 47, 297–305 (2019).

    Article  PubMed  Google Scholar 

  69. Albers, C. & Lakens, D. When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. J. Exp. Soc. Psychol. 74, 187–195 (2018).

    Article  Google Scholar 

  70. R Core Team. R: A Language and Environment for Statistical Computing (2019).


Page 2

Scientific Reports (Sci Rep) ISSN 2045-2322 (online)