Which is not a reason that eggs provide an excellent in vivo viral cultivation system?

  1. Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).

    CAS  PubMed  Article  Google Scholar 

  2. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009). Sato et al. provide the first example of organoids derived from AdSCs isolated from mouse gut.

    CAS  Article  PubMed  Google Scholar 

  3. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS  PubMed  Article  Google Scholar 

  4. Fujii, M. et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787–793 (2018).

    CAS  PubMed  Article  Google Scholar 

  5. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013). Lancaster et al. report that the complexity of human brain development can be modelled by human PSC-derived organoids.

    CAS  PubMed  Article  Google Scholar 

  6. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS  PubMed  Article  Google Scholar 

  7. Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606 (2018).

    CAS  PubMed  Article  Google Scholar 

  8. Turco, M. Y. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19, 568–577 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Huch, M. & Koo, B. K. Modeling mouse and human development using organoid cultures. Development 142, 3113–3125 (2015). In this review, Huch and Koo summarize the development of various organoid culture systems and compare mouse and human systems.

    CAS  PubMed  Article  Google Scholar 

  10. Simian, M. & Bissell, M. J. Organoids: a historical perspective of thinking in three dimensions. J. Cell Biol. 216, 31–40 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    PubMed  Article  CAS  Google Scholar 

  12. Kelava, I. & Lancaster, M. A. Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev. Biol. 420, 199–209 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Kretzschmar, K. & Clevers, H. Organoids: modeling development and the stem cell niche in a dish. Dev. Cell 38, 590–600 (2016).

    CAS  PubMed  Article  Google Scholar 

  14. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    CAS  PubMed  Article  Google Scholar 

  15. Tiriac, H., Plenker, D., Baker, L. A. & Tuveson, D. A. Organoid models for translational pancreatic cancer research. Curr. Opin. Genet. Dev. 54, 7–11 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    PubMed  Article  CAS  Google Scholar 

  17. Kelava, I. & Lancaster, M. A. Stem cell models of human brain development. Cell Stem Cell 18, 736–748 (2016).

    CAS  PubMed  Article  Google Scholar 

  18. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    CAS  PubMed  Article  Google Scholar 

  19. Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nusslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202 (1994).

    CAS  PubMed  Article  Google Scholar 

  20. Haffter, P. & Nusslein-Volhard, C. Large scale genetics in a small vertebrate, the zebrafish. Int. J. Dev. Biol. 40, 221–227 (1996).

    CAS  PubMed  Google Scholar 

  21. Nusslein-Volhard, C. The zebrafish issue of development. Development 139, 4099–4103 (2012).

    PubMed  Article  CAS  Google Scholar 

  22. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013). This is the first report of organ bud formation through self-condensation of cells from different lineages.

    CAS  PubMed  Article  Google Scholar 

  24. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011). Spence et al. identify a step-by-step procedure to generate human intestinal organoids derived from PSCs.

    PubMed  Article  CAS  Google Scholar 

  25. Harris, T. W. et al. WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res. 32, D411–D417 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Baumeister, R. & Ge, L. The worm in us — Caenorhabditis elegans as a model of human disease. Trends Biotechnol. 20, 147–148 (2002).

    CAS  PubMed  Article  Google Scholar 

  27. Poulin, G., Nandakumar, R. & Ahringer, J. Genome-wide RNAi screens in Caenorhabditis elegans: impact on cancer research. Oncogene 23, 8340–8345 (2004).

    CAS  PubMed  Article  Google Scholar 

  28. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Kuzawa, C. W. et al. Metabolic costs and evolutionary implications of human brain development. Proc. Natl Acad. Sci. USA 111, 13010–13015 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Sanoh, S. et al. Predictability of metabolism of ibuprofen and naproxen using chimeric mice with human hepatocytes. Drug. Metab. Dispos. 40, 2267–2272 (2012).

    CAS  PubMed  Article  Google Scholar 

  31. Inoue, T. et al. CYP2C9-catalyzed metabolism of S-warfarin to 7-hydroxywarfarin in vivo and in vitro in chimeric mice with humanized liver. Drug. Metab. Dispos. 36, 2429–2433 (2008).

    CAS  PubMed  Article  Google Scholar 

  32. McCauley, H. A. & Wells, J. M. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144, 958–962 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  Article  PubMed  Google Scholar 

  34. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  Article  PubMed  Google Scholar 

  35. Fowler, J. L., Ang, L. T. & Loh, K. M. A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids. Wiley Interdiscip. Rev. Dev. Biol. 9, e368 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. Dutta, D., Heo, I. & Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410 (2017).

    CAS  PubMed  Article  Google Scholar 

  37. Marton, R. M. & Paşca, S. P. Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol. 15, 133–143 (2020).

    Article  CAS  Google Scholar 

  38. Nishinakamura, R. Human kidney organoids: progress and remaining challenges. Nat. Rev. Nephrol. 15, 613–624 (2019).

    PubMed  Article  Google Scholar 

  39. Prior, N., Inacio, P. & Huch, M. Liver organoids: from basic research to therapeutic applications. Gut 68, 2228–2237 (2019).

    CAS  PubMed  Article  Google Scholar 

  40. Lancaster, M. A. & Huch, M. Disease modelling in human organoids. Dis. Model Mech. 12, dmm039347 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Sachs, N. et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. Osakada, F., Ikeda, H., Sasai, Y. & Takahashi, M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat. Protoc. 4, 811–824 (2009).

    CAS  PubMed  Article  Google Scholar 

  43. McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  Article  PubMed  Google Scholar 

  45. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    CAS  PubMed  Article  Google Scholar 

  46. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. Wert, G. & Mummery, C. Human embryonic stem cells: research, ethics and policy. Hum. Reprod. 18, 672–682 (2003).

    PubMed  Article  Google Scholar 

  48. Huang, C. Y. et al. Human iPSC banking: barriers and opportunities. J. Biomed. Sci. 26, 87 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  49. Liu, G., David, B. T., Trawczynski, M. & Fessler, R. G. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev. Rep. 16, 3–32 (2020).

    PubMed  Article  Google Scholar 

  50. Soldner, F. & Jaenisch, R. Stem cells, genome editing, and the path to translational medicine. Cell 175, 615–632 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Avior, Y., Sagi, I. & Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 17, 170–182 (2016).

    CAS  PubMed  Article  Google Scholar 

  52. Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Takebe, T. et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat. Protoc. 9, 396–409 (2014).

    CAS  PubMed  Article  Google Scholar 

  54. Zhang, Y. et al. 3D modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for notch signaling. Cell Stem Cell 23, 516–529 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Trisno, S. L. et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell 23, 501–515 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. McCracken, K. W. et al. Wnt/beta-catenin promotes gastric fundus specification in mice and humans. Nature 541, 182–187 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Dye, B. R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4, e05098 (2015).

    PubMed Central  Article  Google Scholar 

  58. Barker, N., van de Wetering, M. & Clevers, H. The intestinal stem cell. Genes Dev. 22, 1856–1864 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  Article  PubMed  Google Scholar 

  60. Stange, D. E. et al. Differentiated Troy+chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    CAS  PubMed  Article  Google Scholar 

  62. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126–136 (2015).

    PubMed  Article  Google Scholar 

  65. Schlaermann, P. et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut 65, 202–213 (2016).

    CAS  PubMed  Article  Google Scholar 

  66. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Loomans, C. J. M. et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Rep. 10, 712–724 (2018).

    CAS  Article  Google Scholar 

  68. Lee, S. H. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515–528 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. Sampaziotis, F. et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat. Med. 23, 954–963 (2017).

    CAS  PubMed  Article  Google Scholar 

  71. Boretto, M. et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 144, 1775–1786 (2017).

    CAS  PubMed  Article  Google Scholar 

  72. Linnemann, J. R. et al. Quantification of regenerative potential in primary human mammary epithelial cells. Development 142, 3239–3251 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Chua, C. W. et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. 16, 951–961 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Kessler, M. et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat. Commun. 6, 8989 (2015).

    CAS  PubMed  Article  Google Scholar 

  76. Barkovich, A. J., Guerrini, R., Kuzniecky, R. I., Jackson, G. D. & Dobyns, W. B. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135, 1348–1369 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  77. Heymann, D. L. et al. Zika virus and microcephaly: why is this situation a PHEIC? Lancet 387, 719–721 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  78. Calvet, G. et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect. Dis. 16, 653–660 (2016).

    PubMed  Article  Google Scholar 

  79. Mlakar, J. et al. Zika virus associated with microcephaly. N. Engl. J. Med. 374, 951–958 (2016).

    CAS  PubMed  Article  Google Scholar 

  80. Dang, J. et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19, 258–265 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816–818 (2016). Garcez et al. show the utility of complex brain organoids for translational Zika virus research.

    CAS  PubMed  Article  Google Scholar 

  82. Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Yoon, K. J. et al. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 21, 349–358 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Xu, M. et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 22, 1101–1107 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Ramani, S., Atmar, R. L. & Estes, M. K. Epidemiology of human noroviruses and updates on vaccine development. Curr. Opin. Gastroenterol. 30, 25–33 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Ettayebi, K. et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 353, 1387–1393 (2016). Ettayebi et al. demonstrate that organoid culture systems can support research on difficult pathogens that previously could not be cultivated.

    PubMed  PubMed Central  Article  Google Scholar 

  87. Rotavirus vaccines. WHO position paper—January 2013. Wkly. Epidemiol. Rec. 88, 49–64 (2013).

    Google Scholar 

  88. Saxena, K. et al. Human intestinal enteroids: a new model to study human Rotavirus infection, host restriction, and pathophysiology. J. Virol. 90, 43–56 (2016).

    CAS  PubMed  Article  Google Scholar 

  89. Yin, Y. et al. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antivir. Res. 123, 120–131 (2015).

    CAS  PubMed  Article  Google Scholar 

  90. To, K. K., Chan, J. F., Chen, H., Li, L. & Yuen, K. Y. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities. Lancet Infect. Dis. 13, 809–821 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  91. Zhou, J. et al. Differentiated human airway organoids to assess infectivity of emerging influenza virus. Proc. Natl Acad. Sci. USA 115, 6822–6827 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. Klenk, H. D. Influenza viruses en route from birds to man. Cell Host Microbe 15, 653–654 (2014).

    CAS  PubMed  Article  Google Scholar 

  93. McAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E. & McKimm-Breschkin, J. L. Influenza virus neuraminidase structure and functions. Front. Microbiol. 10, 39 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  94. Bartfeld, S. Modeling infectious diseases and host–microbe interactions in gastrointestinal organoids. Dev. Biol. 420, 262–270 (2016).

    CAS  PubMed  Article  Google Scholar 

  95. Leslie, J. L. et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83, 138–145 (2015).

    PubMed  Article  CAS  Google Scholar 

  96. Heo, I. et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol. 3, 814–823 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Rusnati, M. et al. Recent strategic advances in CFTR drug discovery: an overview. Int. J. Mol. Sci. 21, 2407 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  98. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013). Dekkers et al. report the use of organoids in precision medicine for patients with cystic fibrosis.

    CAS  PubMed  Article  Google Scholar 

  99. Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra384 (2016).

    Article  CAS  Google Scholar 

  100. Berkers, G. et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep. 26, 1701–1708 (2019).

    CAS  PubMed  Article  Google Scholar 

  101. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015). This report describes the first cancer biobank based on an organoid system.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016).

    CAS  PubMed  Article  Google Scholar 

  103. Weeber, F. et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc. Natl Acad. Sci. USA 112, 13308–13311 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. Engel, R. M. et al. Patient-derived colorectal cancer organoids upregulate revival stem cell marker genes following chemotherapeutic treatment. J. Clin. Med. 9, 128 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  105. Ooft, S. N. et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 11, eaay2574 (2019).

    CAS  PubMed  Article  Google Scholar 

  106. Jacob, F. et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180, 188–204 (2020).

    CAS  PubMed  Article  Google Scholar 

  107. Fusco, P. et al. Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer 19, 970 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    CAS  Article  PubMed  Google Scholar 

  110. Driehuis, E. et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl. Acad. Sci. USA 116, 26580–26590 (2019).

    CAS  Article  PubMed Central  Google Scholar 

  111. Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–467 (2018).

    CAS  PubMed  Article  Google Scholar 

  112. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386 (2018).

    CAS  Article  PubMed  Google Scholar 

  114. Seidlitz, T. et al. Human gastric cancer modelling using organoids. Gut 68, 207–217 (2019).

    CAS  PubMed  Article  Google Scholar 

  115. Yan, H. H. N. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882–897 (2018).

    CAS  PubMed  Article  Google Scholar 

  116. Nanki, K. et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 174, 856–869 (2018).

    CAS  PubMed  Article  Google Scholar 

  117. Li, X. et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun. 9, 2983 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. Boretto, M. et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 21, 1041–1051 (2019).

    CAS  PubMed  Article  Google Scholar 

  119. Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 3991 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Ganesh, K. et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 25, 1607–1614 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26 (2020).

    CAS  PubMed  Article  Google Scholar 

  123. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    CAS  PubMed  Article  Google Scholar 

  124. Hockemeyer, D. & Jaenisch, R. Gene targeting in human pluripotent cells. Cold Spring Harb. Symp. Quant. Biol. 75, 201–209 (2010).

    CAS  PubMed  Article  Google Scholar 

  125. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    PubMed  Article  Google Scholar 

  126. Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    CAS  PubMed  Article  Google Scholar 

  127. Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    CAS  PubMed  Article  Google Scholar 

  128. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    CAS  PubMed  Article  Google Scholar 

  129. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    CAS  PubMed  Article  Google Scholar 

  132. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013). Schwank et al. report the first study to apply CRISPR–Cas9-based gene correction in an organoid system.

    CAS  PubMed  Article  Google Scholar 

  134. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    CAS  PubMed  Article  Google Scholar 

  135. Matano, M. et al. Modeling colorectal cancer using CRISPR–Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    CAS  PubMed  Article  Google Scholar 

  136. Andersson-Rolf, A. et al. One-step generation of conditional and reversible gene knockouts. Nat. Methods 14, 287–289 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. Merenda, A. et al. A protocol for multiple gene knockout in mouse small intestinal organoids using a CRISPR-concatemer. J. Vis. Exp. 125, e55916 (2017).

    Google Scholar 

  138. Andersson-Rolf, A. et al. Simultaneous paralogue knockout using a CRISPR–concatemer in mouse small intestinal organoids. Dev. Biol. 420, 271–277 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. Michels, B. E. et al. Pooled in vitro and in vivo CRISPR–Cas9 screening identifies tumor suppressors in human colon organoids. Cell Stem Cell 26, 782–792 (2020).

    CAS  PubMed  Article  Google Scholar 

  140. Ringel, T. et al. Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-beta resistance. Cell Stem Cell 26, e438 (2020).

    Article  CAS  Google Scholar 

  141. Dotti, I. et al. Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis. Gut 66, 2069–2079 (2017).

    CAS  PubMed  Article  Google Scholar 

  142. Kraiczy, J. et al. DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut 68, 49–61 (2019).

    CAS  PubMed  Article  Google Scholar 

  143. Suzuki, K. et al. Single cell analysis of Crohn’s disease patient-derived small intestinal organoids reveals disease activity-dependent modification of stem cell properties. J. Gastroenterol. 53, 1035–1047 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. Howell, K. J. et al. DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154, 585–598 (2018).

    CAS  PubMed  Article  Google Scholar 

  145. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    CAS  PubMed  Article  Google Scholar 

  146. Nanki, K. et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577, 254–259 (2020).

    CAS  PubMed  Article  Google Scholar 

  147. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Yang, H., Wang, H. & Jaenisch, R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat. Protoc. 9, 1956–1968 (2014).

    CAS  PubMed  Article  Google Scholar 

  149. Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. Kostic, A. D., Howitt, M. R. & Garrett, W. S. Exploring host-microbiota interactions in animal models and humans. Genes. Dev 27, 701–718 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. Takebe, T. et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16, 556–565 (2015).

    CAS  PubMed  Article  Google Scholar 

  152. Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. Bar-Ephraim, Y. E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat. Rev. Immunol. (2019).

  154. Kim, J., Koo, B. K. & Yoon, K. J. Modeling host-virus interactions in viral infectious diseases using stem-cell-derived systems and CRISPR/Cas9 technology. Viruses 11, 124 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  155. Schreurs, R. et al. Human fetal TNF-alpha-cytokine-producing CD4+ effector memory T cells promote intestinal development and mediate inflammation early in life. Immunity 50, 462–476 (2019).

    CAS  PubMed  Article  Google Scholar 

  156. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. Schnalzger, T. E. et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 38, e100928 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. Nozaki, K. et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J. Gastroenterol. 51, 206–213 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. Noel, G. et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci. Rep. 7, 45270 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. Leeman, K. T., Pessina, P., Lee, J. H. & Kim, C. F. Mesenchymal stem cells increase alveolar differentiation in lung progenitor organoid cultures. Sci. Rep. 9, 6479 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  162. Lee, J. H. et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell 170, 1149–1163 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Koike, H. et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature 574, 112–116 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. Bagley, J. A., Reumann, D., Bian, S., Levi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 14, 743–751 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. Adhya, D. et al. Understanding the role of steroids in typical and atypical brain development: advantages of using a “brain in a dish” approach. J. Neuroendocrinol. 30, e12547 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  168. Zhang, C., Zhao, Z., Abdul Rahim, N. A., van Noort, D. & Yu, H. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab. Chip 9, 3185–3192 (2009).

    CAS  PubMed  Article  Google Scholar 

  169. Zhang, Y. S. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl Acad. Sci. USA 114, E2293–E2302 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  170. Giobbe, G. G. et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat. Commun. 10, 5658 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  171. Jee, J. H. et al. Development of collagen-based 3D matrix for gastrointestinal tract-derived organoid culture. Stem Cell Int. 2019, 8472712 (2019).

    Google Scholar 

  172. Cruz-Acuna, R. et al. PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nat. Protoc. 13, 2102–2119 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. Ng, S., Tan, W. J., Pek, M. M. X., Tan, M. H. & Kurisawa, M. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials 219, 119400 (2019).

    CAS  PubMed  Article  Google Scholar 

  174. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS  PubMed  Article  Google Scholar 

  175. Broguiere, N. et al. Growth of epithelial organoids in a defined hydrogel. Adv. Mater. 30, e1801621 (2018).

    PubMed  Article  CAS  Google Scholar 

  176. Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    CAS  Article  PubMed  Google Scholar 

  177. Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988).

    CAS  Article  PubMed  Google Scholar 

  178. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. Nichols, J. et al. Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat. Med. 15, 814–818 (2009).

    CAS  PubMed  Article  Google Scholar 

  180. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    CAS  PubMed  Article  Google Scholar 

  181. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    CAS  PubMed  Article  Google Scholar 

  182. Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013).

    CAS  PubMed  Article  Google Scholar 

  183. Chan, Y. S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675 (2013).

    CAS  PubMed  Article  Google Scholar 

  184. Ware, C. B. et al. Derivation of naive human embryonic stem cells. Proc. Natl Acad. Sci. USA 111, 4484–4489 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  185. Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 524–526 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  186. Guo, G. et al. Epigenetic resetting of human pluripotency. Development 144, 2748–2763 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  187. Guo, G. et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep. 6, 437–446 (2016).

    CAS  Article  Google Scholar 

  188. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  190. Van der Jeught, M. et al. Application of small molecules favoring naive pluripotency during human embryonic stem cell derivation. Cell Reprogram. 17, 170–180 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  191. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  192. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020).

    Article  CAS  Google Scholar 

  193. Zhao, B. et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell https://doi.org/10.1007/s13238-020-00718-6 (2020).

  194. Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  195. Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science https://doi.org/10.1126/science.abc1669 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  197. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  198. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  199. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  200. Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  201. Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


Page 2

The most common model organisms that are used in biomedical research are Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Mus musculus, along with patient-derived xenografts (PDX). These models, as well as 2D cell cultures and human organoids, are assessed here for their relative benefits and limitations. Relative scores are represented as being the best (dark green tick), good (light green tick), partly suitable (yellow tick) and not suitable (red cross).