What types of intravenous solutions are used for fluid replacement?

IV therapy delivers effective results because just one drip bag is packed with vitamins, minerals and electrolytes designed to support your health and wellness. But when you consider all the high-quality ingredients in IV fluids, don’t overlook the fluids themselves. If you know what’s in IV fluids, you’ll have a deeper understanding of the profound effects IV therapy can have on your mind and body. 

How Intravenous Fluids Benefit You

Your body needs to be in a state of homeostasis to feel its best and function properly. Homeostasis is the balanced alignment of oxygen, fluid and electrolyte levels in the body. 

But this balance is a delicate one. Dehydration, illness, injury or chronic health conditions can leave your levels askew. The resulting deficiencies of electrolytes, fluids or vitamins can wreak havoc on your well-being, triggering symptoms that may include fatigue, nausea, brain fog and more.

This is when IV therapy comes to the rescue. IV fluids are infused into the bloodstream, where the body absorbs the maximum amount of whatever vitamins, minerals and electrolytes they contain. Bodily fluids are replenished, nutrient levels are restored and electrolytes maintain cellular osmosis to keep fluid moving in and out of cells in a balanced way. You’ll feel better, regaining vitality, when your body returns to homeostasis through IV therapy. 

But what is IV fluid anyway? There’s not one single answer because there are several different kinds of fluids. 

Types of IV fluids

You can group IV solutions into two categories: crystalloid and colloid. Both are sterile solutions that can be customized with various ingredients. However, they have different compositions, which have distinct reactions in the body. Crystalloid fluids interact with cells because the solutions carry their tiny particles through the semipermeable cellular membrane. However, the particles in colloid fluids stay in your bloodstream because they are too large to enter the membrane.

Crystalloid Solutions

These are common IV fluids because they are affordable and accessible, as well as shelf-stable and free of allergens. There are three subgroups of IV fluids in the crystalloid category: hypotonic, hypertonic and isotonic.

Hypotonic 

These intravenous solutions increase fluid levels within cells. This is particularly helpful for conditions such as diabetes, which may reduce levels of cellular fluid. Cells can’t maintain proper function when they don’t achieve osmosis and lose too much fluid. The following crystalloid IV fluids are all hypotonic:

Sodium chlorine (aka saline) is the main ingredient in all hypotonic solutions. Compared to isotonic and hypertonic IVs, the hypotonic fluids are lower in sodium chlorine. Consequently, these solutions are used in situations where patients have hypernatremia or high sodium chloride levels. If the body gets too much fluid, which can happen with hypotonic solutions, it may negatively affect electrolyte levels or cause edemas. This particular fluid should not be used with patients who have heart or kidney failure.

While a 0.33% solution can help people with impaired kidney function retain water, it’s not beneficial for those with more severe kidney disorders. There is a risk of pulmonary edemas with this group, as well as people with heart problems.

This is a common type of IV fluid for pediatric health needs. It’s typically not used on its own but in tandem with a form of glucose called dextrose. 

IV therapy is incredibly effective at treating dehydration, caused by any number of factors, such as hangovers, illness, strenuous physical activity, migraines and other health conditions. The 2.5% dextrose in water solution nets great results in relieving dehydration symptoms. 

Hypertonic

Hypertonic fluids, as the name implies, are the opposite of hypotonic. They have a higher sodium content and draw water out of the cells instead of bringing it in. The higher saline count makes hypertonic intravenous fluids ideal for replacing electrolytes but not as good for resolving dehydration. The options for these fluids include:

  • 3% NaCl
  • 5% NaCl
  • 5% dextrose in 0.45% NaCl
  • 5% dextrose in 0.9% NaCl
  • 5% dextrose in Lactated Ringer’s (see Isotonic solutions below)
  • 10% dextrose in water
  • 20% dextrose in water
  • 50% dextrose in water.

Isotonic

The volume of an isotonic solution resembles that of your blood plasma. This composition enables isotonic solutions to maintain balanced osmotic pressure with equal amounts of fluids, both inside and outside of cells. These are two of the most popular isotonic fluids used in IV therapy:

You can often find this fluid in emergency rooms, ambulances and other places dealing with critical health issues. Lactated Ringer’s helps people with extensive burns, severe injuries or major loss of blood. A variation of this isotonic fluid is called Ringer’s Solution, and it is free of lactate. 

Also called a normal saline solution, it works well at alleviating dehydration symptoms.

Two other isotonic solutions are used in more specific circumstances:

This fluid supports hospitalized patients who can’t eat normal food by supplying them with calories. 

This solution is paired with red blood cells for IV treatment. It shares almost identical electrolyte levels with blood plasma in the body.

Colloid Solutions

Colloid solutions stay in the bloodstream and provide nutrients to help patients regain strength. They also don’t carry a risk of pulmonary edemas by swelling the body with too much fluid. Colloid IV fluids include:

  • 5% albumin
  • 25% albumin
  • Hetastarch
  • Hespan
  • Low-molecular weight dextran
  • High-molecular weight dextran

Try IV Therapy with Rocky Mountain IV Medics

At Rocky Mountain IV Medics, we use only the best medical-grade IV fluids and ingredients in all of our treatments. We provide mobile IV therapy in multiple service areas throughout Colorado, and our team members can be at your home or office within an hour of contacting us. Check out our cost-effective pricing packages, and don’t forget to join our VIP program. Call or text (720) 987-2155 or book treatment online.

1. Goldfarb DS. The normal saline ceremony. Am J Kidney Dis. 2010;56(2):A28–A29. doi: 10.1053/j.ajkd.2010.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Severs D, Rookmaaker MB, Hoorn EJ. Intravenous solutions in the care of patients with volume depletion and electrolyte abnormalities. Am J Kidney Dis. 2015;66(1):147–153. doi: 10.1053/j.ajkd.2015.01.031. [PubMed] [CrossRef] [Google Scholar]

3. Latta TA. Malignant cholera. Documents communicated by the Central Board of Health, London, relative to the treatment of cholera by the copious injection of aqueous and saline fluids into the veins. The Lancet. 1832;18:274–280. doi: 10.1016/S0140-6736(02)80289-6. [CrossRef] [Google Scholar]

4. Cosnett JE. The origins of intravenous fluid therapy. The Lancet. 1989;1(8641):768–771. doi: 10.1016/S0140-6736(89)92583-X. [PubMed] [CrossRef] [Google Scholar]

5. Miller DJ. Sydney Ringer; physiological saline, calcium and the contraction of the heart. J Physiol. 2004;555(3):585–587. doi: 10.1113/jphysiol.2004.060731. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Ringer S. Regarding the action of the hydrate of soda, hydrate of ammonia, and the hydrate of potash on the ventricle of the frog’s heart. J Physiol (London) 1880/82;3:195–202. [PMC free article] [PubMed]

7. Lee JA. Sydney Ringer (1834–1910) and Alexis Hartmann (1898–1964) Anaesthesia. 1981;36(12):1115–1121. doi: 10.1111/j.1365-2044.1981.tb08698.x. [PubMed] [CrossRef] [Google Scholar]

8. Hartmann AF, Senn MJ. Studies in the metabolism of sodium R-lactate. I. Response of normal human subjects to the intravenous injection of sodium R-lactate. J Clin Invest. 1932;11(2):327–335. doi: 10.1172/JCI100414. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Hamburger HJ. Osmotischer Druck und Ionenlehre in den medicinischen Wissenschaften: Zugleich Lehrbuch physikalisch-chemischer Methoden. Wiesbaden: J. F. Bergmann; 1902. [Google Scholar]

10. Awad S, Allison SP, Lobo DN. The history of 0.9% saline. Clin Nutr. 2008;27(2):179–188. doi: 10.1016/j.clnu.2008.01.008. [PubMed] [CrossRef] [Google Scholar]

11. Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci (Lond) 2003;104(1):17–24. [PubMed] [Google Scholar]

12. Caironi P, Gattinoni L. The clinical use of albumin: the point of view of a specialist in intensive care. Blood Transfus. 2009;7(4):259–267. [PMC free article] [PubMed] [Google Scholar]

13. Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–2256. doi: 10.1056/NEJMoa040232. [PubMed] [CrossRef] [Google Scholar]

14. Zarychanski R, Abou-Setta AM, Turgeon AF, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–688. doi: 10.1001/jama.2013.430. [PubMed] [CrossRef] [Google Scholar]

15. Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–1911. doi: 10.1056/NEJMoa1209759. [PubMed] [CrossRef] [Google Scholar]

16. Wise J. Boldt: the great pretender. BMJ. 2013;346:f1738. doi: 10.1136/bmj.f1738. [PubMed] [CrossRef] [Google Scholar]

17. Rizoli S. PlasmaLyte. J Trauma. 2011;70(5 Suppl):17–18. doi: 10.1097/TA.0b013e31821a4d89. [PubMed] [CrossRef] [Google Scholar]

18. Smorenberg A, Groeneveld AB. Diuretic response to colloid and crystalloid fluid loading in critically ill patients. J Nephrol. 2015;28(1):89–95. doi: 10.1007/s40620-014-0101-0. [PubMed] [CrossRef] [Google Scholar]

19. Carvounis CP, Nisar S, Guro-Razuman S. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int. 2002;62(6):2223–2229. doi: 10.1046/j.1523-1755.2002.00683.x. [PubMed] [CrossRef] [Google Scholar]

20. Moritz ML, Ayus JC. Maintenance intravenous fluids in acutely Ill patients. N Engl J Med. 2015;373(14):1350–1360. doi: 10.1056/NEJMra1412877. [PubMed] [CrossRef] [Google Scholar]

21. Arieff AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med. 1986;314(24):1529–1535. doi: 10.1056/NEJM198606123142401. [PubMed] [CrossRef] [Google Scholar]

22. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–265. doi: 10.1097/CCM.0b013e3181feeb15. [PubMed] [CrossRef] [Google Scholar]

23. Lief L. Maintenance intravenous fluids in acutely Ill patients. N Engl J Med. 2016;374(3):289–290. doi: 10.1056/NEJMc1513887. [PubMed] [CrossRef] [Google Scholar]

24. Chin KJ, Macachor J, Ong KC, Ong BC. A comparison of 5% dextrose in 0.9% normal saline versus non-dextrose-containing crystalloids as the initial intravenous replacement fluid in elective surgery. Anaesth Intensive Care. 2006;34(5):613–617. [PubMed] [Google Scholar]

25. Petzold A, Citerio G, Mayer SA. Maintenance intravenous fluids in acutely Ill patients. N Engl J Med. 2016;374(3):290. [PubMed] [Google Scholar]

26. Seners P, Turc G, Oppenheim C, Baron JC. Incidence, causes and predictors of neurological deterioration occurring within 24h following acute ischaemic stroke: a systematic review with pathophysiological implications. J Neurol Neurosurg Psychiatry. 2015;86(1):87–94. doi: 10.1136/jnnp-2014-308327. [PubMed] [CrossRef] [Google Scholar]

27. Sumpelmann R, Mader T, Eich C, Witt L, Osthaus WA. A novel isotonic-balanced electrolyte solution with 1% glucose for intraoperative fluid therapy in children: results of a prospective multicentre observational post-authorization safety study (PASS) Paediatr Anaesth. 2010;20(11):977–981. doi: 10.1111/j.1460-9592.2010.03428.x. [PubMed] [CrossRef] [Google Scholar]

28. Waters JH, Miller LR, Clack S, Kim JV. Cause of metabolic acidosis in prolonged surgery. Crit Care Med. 1999;27(10):2142–2146. doi: 10.1097/00003246-199910000-00011. [PubMed] [CrossRef] [Google Scholar]

29. Garella S, Chang BS, Kahn SI. Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int. 1975;8(5):279–283. doi: 10.1038/ki.1975.114. [PubMed] [CrossRef] [Google Scholar]

30. Prough DS, Bidani A. Hyperchloremic metabolic acidosis is a predictable consequence of intraoperative infusion of 0.9% saline. Anesthesiology. 1999;90(5):1247–1249. doi: 10.1097/00000542-199905000-00003. [PubMed] [CrossRef] [Google Scholar]

31. Gattinoni L, Carlesso E, Maiocchi G, Polli F, Cadringher P. Dilutional acidosis: where do the protons come from? Intensive Care Med. 2009;35(12):2033–2043. doi: 10.1007/s00134-009-1653-7. [PubMed] [CrossRef] [Google Scholar]

32. Doberer D, Funk GC, Kirchner K, Schneeweiss B. A critique of Stewart’s approach: the chemical mechanism of dilutional acidosis. Intensive Care Med. 2009;35(12):2173–2180. doi: 10.1007/s00134-009-1528-y. [PubMed] [CrossRef] [Google Scholar]

33. Davenport A. Dilutional acidosis or uncovered cellular metabolism? Intensive Care Med. 2009;35(12):2009–2011. doi: 10.1007/s00134-009-1700-4. [PubMed] [CrossRef] [Google Scholar]

34. Mirza BI, Sahani M, Leehey DJ, Patel SB, Yang VL, Ing TS. Saline-induced dilutional acidosis in a maintenance hemodialysis patient. Int J Artif Organs. 1999;22(10):676–678. [PubMed] [Google Scholar]

35. Wilcox CS, Granges F, Kirk G, Gordon D, Giebisch G. Effects of saline infusion on titratable acid generation and ammonia secretion. Am J Physiol. 1984;247(3 Pt 2):F506–F519. [PubMed] [Google Scholar]

36. Cervera AL, Moss G. Dilutional re-expansion with crystalloid after massive hemorrahage: saline versus balanced electrolyte solution for maintenance of normal blood volume and arterial pH. J Trauma. 1975;15(6):498–503. doi: 10.1097/00005373-197506000-00008. [PubMed] [CrossRef] [Google Scholar]

37. Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90(5):1265–1270. doi: 10.1097/00000542-199905000-00007. [PubMed] [CrossRef] [Google Scholar]

38. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR. Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg. 2001;93(4):817–822. doi: 10.1097/00000539-200110000-00004. [PubMed] [CrossRef] [Google Scholar]

39. Todd SR, Malinoski D, Muller PJ, Schreiber MA. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma. 2007;62(3):636–639. doi: 10.1097/TA.0b013e31802ee521. [PubMed] [CrossRef] [Google Scholar]

40. Kiraly LN, Differding JA, Enomoto TM, et al. Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J Trauma. 2006;61(1):57–64. doi: 10.1097/01.ta.0000220373.29743.69. [PubMed] [CrossRef] [Google Scholar]

41. Severs D, Hoorn EJ, Rookmaaker MB. A critical appraisal of intravenous fluids: from the physiological basis to clinical evidence. Nephrol Dial Transplant. 2015;30(2):178–187. doi: 10.1093/ndt/gfu005. [PubMed] [CrossRef] [Google Scholar]

42. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24. doi: 10.1097/SLA.0b013e318256be72. [PubMed] [CrossRef] [Google Scholar]

43. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–735. doi: 10.1172/JCI110820. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Hsieh BS, Wang TC, Chen YM, Wu KD. Blood pressure, circulating atrial natriuretic peptide and sodium excretion responses during acute saline infusion in patients with essential hypertension. J Formos Med Assoc. 1994;93(7):576–581. [PubMed] [Google Scholar]

45. Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–829. doi: 10.1097/SLA.0b013e31825074f5. [PubMed] [CrossRef] [Google Scholar]

46. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–1572. doi: 10.1001/jama.2012.13356. [PubMed] [CrossRef] [Google Scholar]

47. Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med. 2015;41(2):257–264. doi: 10.1007/s00134-014-3593-0. [PubMed] [CrossRef] [Google Scholar]

48. Young P, Bailey M, Beasley R, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–1710. doi: 10.1001/jama.2015.12334. [PubMed] [CrossRef] [Google Scholar]

49. Kellum JA, Shaw AD. Assessing toxicity of intravenous crystalloids in critically Ill patients. JAMA. 2015;314(16):1695–1697. doi: 10.1001/jama.2015.12390. [PubMed] [CrossRef] [Google Scholar]

50. O’Malley CM, Frumento RJ, Hardy MA, et al. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg. 2005;100(5):1518–1524. doi: 10.1213/01.ANE.0000150939.28904.81. [PubMed] [CrossRef] [Google Scholar]

51. Wan S, Roberts MA, Mount P. Normal saline versus lower-chloride solutions for kidney transplantation. Cochrane Database Syst Rev 2016(8):CD010741 [PMC free article] [PubMed]

52. Nadeem A, Salahuddin N, El Hazmi A, et al. Chloride-liberal fluids are associated with acute kidney injury after liver transplantation. Crit Care. 2014;18(6):625. doi: 10.1186/s13054-014-0625-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19(5):823–832. [PubMed] [Google Scholar]

54. Halberthal M, Halperin ML, Bohn D. Lesson of the week: acute hyponatraemia in children admitted to hospital: retrospective analysis of factors contributing to its development and resolution. BMJ. 2001;322(7289):780–782. doi: 10.1136/bmj.322.7289.780. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Hoorn EJ, Geary D, Robb M, Halperin ML, Bohn D. Acute hyponatremia related to intravenous fluid administration in hospitalized children: an observational study. Pediatrics. 2004;113(5):1279–1284. doi: 10.1542/peds.113.5.1279. [PubMed] [CrossRef] [Google Scholar]

56. Neville KA, Verge CF, O’Meara MW, Walker JL. High antidiuretic hormone levels and hyponatremia in children with gastroenteritis. Pediatrics. 2005;116(6):1401–1407. doi: 10.1542/peds.2004-2376. [PubMed] [CrossRef] [Google Scholar]

57. Neville KA, Sandeman DJ, Rubinstein A, Henry GM, McGlynn M, Walker JL. Prevention of hyponatremia during maintenance intravenous fluid administration: a prospective randomized study of fluid type versus fluid rate. J Pediatr. 2010;313-9(2):e1–e2. [PubMed] [Google Scholar]

58. Choong K, Kho ME, Menon K, Bohn D. Hypotonic versus isotonic saline in hospitalised children: a systematic review. Arch Dis Child. 2006;91(10):828–835. doi: 10.1136/adc.2005.088690. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Saba TG, Fairbairn J, Houghton F, Laforte D, Foster BJ. A randomized controlled trial of isotonic versus hypotonic maintenance intravenous fluids in hospitalized children. BMC Pediatr. 2011;11:82. doi: 10.1186/1471-2431-11-82. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Choong K, Arora S, Cheng J, et al. Hypotonic versus isotonic maintenance fluids after surgery for children: a randomized controlled trial. Pediatrics. 2011;128(5):857–866. doi: 10.1542/peds.2011-0415. [PubMed] [CrossRef] [Google Scholar]

61. Foster BA, Tom D, Hill V. Hypotonic versus isotonic fluids in hospitalized children: a systematic review and meta-analysis. J Pediatr. 2014;163-9(1):e2. [PubMed] [Google Scholar]

62. Wang J, Xu E, Xiao Y. Isotonic versus hypotonic maintenance IV fluids in hospitalized children: a meta-analysis. Pediatrics. 2014;133(1):105–113. doi: 10.1542/peds.2013-2041. [PubMed] [CrossRef] [Google Scholar]

63. Friedman JN, Beck CE, DeGroot J, Geary DF, Sklansky DJ, Freedman SB. Comparison of isotonic and hypotonic intravenous maintenance fluids: a randomized clinical trial. JAMA Pediatr. 2015;169(5):445–451. doi: 10.1001/jamapediatrics.2014.3809. [PubMed] [CrossRef] [Google Scholar]

64. McNab S, Duke T, South M, et al. 140mmol/L of sodium versus 77mmol/L of sodium in maintenance intravenous fluid therapy for children in hospital (PIMS): a randomised controlled double-blind trial. The Lancet. 2015;385(9974):1190–1197. doi: 10.1016/S0140-6736(14)61459-8. [PubMed] [CrossRef] [Google Scholar]

65. Moritz ML, Ayus C. Isotonic maintenance fluids do not produce hypernatraemia. Arch Dis Child. 2009;94(2):170. doi: 10.1136/adc.2008.147108. [PubMed] [CrossRef] [Google Scholar]

66. Duke T. Maintenance intravenous fluids for children: enough evidence, now for translation and action. Paediatr Int Child Health (London) 2016;36(3):165–167. doi: 10.1080/20469047.2016.1180774. [PubMed] [CrossRef] [Google Scholar]

67. Liamis G, Kalogirou M, Saugos V, Elisaf M. Therapeutic approach in patients with dysnatraemias. Nephrol Dial Transplant. 2006;21(6):1564–1569. doi: 10.1093/ndt/gfk090. [PubMed] [CrossRef] [Google Scholar]

68. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–1589. doi: 10.1056/NEJM200005253422107. [PubMed] [CrossRef] [Google Scholar]

69. Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant. 2014;29(Suppl 2):i1–i39. doi: 10.1093/ndt/gfu040. [PubMed] [CrossRef] [Google Scholar]

70. Moritz ML, Ayus JC. 100cc 3% sodium chloride bolus: a novel treatment for hyponatremic encephalopathy. Metab Brain Dis. 2010;25(1):91–96. doi: 10.1007/s11011-010-9173-2. [PubMed] [CrossRef] [Google Scholar]

71. Ayus JC, Caputo D, Bazerque F, Heguilen R, Gonzalez CD, Moritz ML. Treatment of hyponatremic encephalopathy with a 3% sodium chloride protocol: a case series. Am J Kidney Dis. 2015;65(3):435–442. doi: 10.1053/j.ajkd.2014.09.021. [PubMed] [CrossRef] [Google Scholar]

72. Spital A. Treatment of hyponatremic encephalopathy. Am J Kidney Dis. 2015;66(3):540. doi: 10.1053/j.ajkd.2015.04.052. [PubMed] [CrossRef] [Google Scholar]

73. Sterns RH. Hypernatremia in the intensive care unit: instant quality–just add water. Crit Care Med. 1999;27(6):1041–1042. doi: 10.1097/00003246-199906000-00005. [PubMed] [CrossRef] [Google Scholar]

74. Hoorn EJ, Betjes MG, Weigel J, Zietse R. Hypernatraemia in critically ill patients: too little water and too much salt. Nephrol Dial Transplant. 2008;23(5):1562–1568. doi: 10.1093/ndt/gfm831. [PubMed] [CrossRef] [Google Scholar]

75. Hoste EA, Colpaert K, Vanholder RC, et al. Sodium bicarbonate versus THAM in ICU patients with mild metabolic acidosis. J Nephrol. 2005;18(3):303–307. [PubMed] [Google Scholar]

76. Kraut JA, Madias NE. Lactic acidosis: current treatments and future directions. Am J Kidney Dis. 2016;68(3):473–482. doi: 10.1053/j.ajkd.2016.04.020. [PubMed] [CrossRef] [Google Scholar]

77. Jung B, Rimmele T, Le Goff C, et al. Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care. 2011;15(5):R238. doi: 10.1186/cc10487. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Kimmoun A, Ducrocq N, Sennoun N, et al. Efficient extra- and intracellular alkalinization improves cardiovascular functions in severe lactic acidosis induced by hemorrhagic shock. Anesthesiology. 2014;120(4):926–934. doi: 10.1097/ALN.0000000000000077. [PubMed] [CrossRef] [Google Scholar]

79. Luke RG, Galla JH. It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol. 2012;23(2):204–207. doi: 10.1681/ASN.2011070720. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. van Noord C, Zietse R, van den Dorpel MA, Hoorn EJ. The case mid R: a 62-year-old man with severe alkalosis. Kidney Int. 2012;81(7):711–712. doi: 10.1038/ki.2011.447. [PubMed] [CrossRef] [Google Scholar]


Page 2

What types of intravenous solutions are used for fluid replacement?

Composition of commonly used intravenous fluids

OsmolalityTonicityNa+ Cl− K+ Mg2+ Ca2+ Buffera
Plasma288Reference1401034.51.252.524
0.9% NaCl308Isotonic1541540000
Lactated Ringer’s279Hypotonic1301114.002.729
PlasmaLyteN/AIsotonic140985.01.5050
Sterofundin309Isotonic1401274.01.02.529
5% Glucose278Hypotonic000000
1.4% NaHCO3 333Hypertonic1670000167