If a b c are three unit vectors such that a+b+c=1 and a is perpendicular to b

Last updated at April 22, 2021 by

Hello! Teachoo has made the content for you with a lot of effort and love. Since provides this answer for free, we need you support to make more vidoes. Can you please support us by donating some money? Please click on this link to make a donation

If a b c are three unit vectors such that a+b+c=1 and a is perpendicular to b
If a b c are three unit vectors such that a+b+c=1 and a is perpendicular to b
If a b c are three unit vectors such that a+b+c=1 and a is perpendicular to b
If a b c are three unit vectors such that a+b+c=1 and a is perpendicular to b
If a b c are three unit vectors such that a+b+c=1 and a is perpendicular to b

Did you like the solution? Help Teachoo do more. Please click on this link to make a donation

Ex 10.3, 13 (Method 1) If π‘Ž βƒ— ,𝑏 βƒ—, 𝑐 βƒ— are unit vectors such that π‘Ž βƒ— + 𝑏 βƒ— + 𝑐 βƒ— = 0 βƒ—, find the value of π‘Ž βƒ— .𝑏 βƒ—+𝑏 βƒ— . 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ— . Given π‘Ž βƒ— ,𝑏 βƒ—, 𝑐 βƒ— are unit vectors Magnitude of π‘Ž βƒ— ,𝑏 βƒ—, 𝑐 βƒ— is 1 So, |𝒂 βƒ— | = |𝒃 βƒ— | = |𝒄 βƒ— | = 1 Also, π‘Ž βƒ— + 𝑏 βƒ— + 𝑐 βƒ— = 0 βƒ— So, |𝒂 βƒ—" + " 𝒃 βƒ—" + " 𝒄 βƒ— | = |𝟎 βƒ— | = 0 Now, |𝒂 βƒ—+𝒃 βƒ—+𝒄 βƒ— |2 = (𝒂 βƒ— + 𝒃 βƒ— + 𝒄 βƒ—) . (𝒂 βƒ— + 𝒃 βƒ— + 𝒄 βƒ—) = π‘Ž βƒ—. π‘Ž βƒ— + π‘Ž βƒ— . 𝑏 βƒ— + 𝒂 βƒ— . 𝒄 βƒ— + 𝒃 βƒ— . 𝒂 βƒ— + 𝑏 βƒ— . 𝑏 βƒ— + 𝑏 βƒ— . 𝑐 βƒ— + 𝑐 βƒ— . π‘Ž βƒ— + 𝒄 βƒ— . 𝒃 βƒ— + 𝑐 βƒ— . 𝑐 βƒ— = π‘Ž βƒ—. π‘Ž βƒ— + π‘Ž βƒ— . 𝑏 βƒ— + 𝒄 βƒ— . 𝒂 βƒ— + 𝒂 βƒ— . 𝒃 βƒ— + 𝑏 βƒ— . 𝑏 βƒ— + 𝑏 βƒ— . 𝑐 βƒ— + 𝑐 βƒ— . π‘Ž βƒ— + 𝒃 βƒ— . 𝒄 βƒ— + 𝑐 βƒ— . 𝑐 βƒ— = π‘Ž βƒ— . π‘Ž βƒ— + 𝑏 βƒ— . 𝑏 βƒ— + 𝑐 βƒ— . 𝑐 βƒ— + 2π‘Ž βƒ—. 𝑏 βƒ— + 2𝑏 βƒ—. 𝑐 βƒ— + 2𝑐 βƒ—. π‘Ž βƒ— = 𝒂 βƒ— . 𝒂 βƒ— + 𝒃 βƒ— . 𝒃 βƒ— + 𝒄 βƒ— . 𝒄 βƒ— + 2(π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ—) = |𝒂 βƒ— |𝟐 + |𝒃 βƒ— |𝟐 + |𝒄 βƒ— |𝟐 + 2 (π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + 𝑐 βƒ— . π‘Ž βƒ—) = 12 + 12 + 12 + 2(π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ—) = 1 + 1 + 1 + 2(π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ—) = 3 + 2 (π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ—) ∴ |π‘Ž βƒ—+𝑏 βƒ—+𝑐 βƒ— |2 = 3 + 2 (π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ—) Now, |π‘Ž βƒ—" + " 𝑏 βƒ—" + " 𝑐 βƒ— | = 0 |π‘Ž βƒ—" + " 𝑏 βƒ—" + " 𝑐 βƒ— |^2 = 0 3 + 2 (π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ—) = 0 2(π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ—) = βˆ’3 (𝒂 βƒ—. 𝒃 βƒ— + 𝒃 βƒ—. 𝒄 βƒ— + 𝒄 βƒ—. 𝒂 βƒ—) = (βˆ’πŸ‘)/𝟐 Ex 10.3, 13 (Method 2) If π‘Ž βƒ— ,𝑏 βƒ—, 𝑐 βƒ— are unit vectors such that π‘Ž βƒ— + 𝑏 βƒ— + 𝑐 βƒ— = 0, find the value of π‘Ž βƒ— .𝑏 βƒ—+𝑏 βƒ— . 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ— . Given π‘Ž βƒ— ,𝑏 βƒ—, 𝑐 βƒ— are unit vectors So, |𝒂 βƒ— | = |𝒃 βƒ— | = |𝒄 βƒ— | = 1 Also, ( π‘Ž βƒ— + 𝑏 βƒ— + 𝑐 βƒ— ) = 0 βƒ— Now, 𝒂 βƒ— . (𝒂 βƒ— + 𝒃 βƒ— + 𝒄 βƒ—) = π‘Ž βƒ— . π‘Ž βƒ— + π‘Ž βƒ—. 𝑏 βƒ— + π‘Ž βƒ— . 𝑐 βƒ— π‘Ž βƒ— . 0 βƒ— = π‘Ž βƒ—. π‘Ž βƒ— + π‘Ž βƒ—. 𝑏 βƒ— + π‘Ž βƒ—. 𝑐 βƒ— 0 = 𝒂 βƒ—. 𝒂 βƒ— + π‘Ž βƒ—. 𝑏 βƒ— + π‘Ž βƒ—. 𝑐 βƒ— 0 βƒ— = |𝒂 βƒ— |𝟐 + π‘Ž βƒ—. 𝑏 βƒ— + π‘Ž βƒ—. 𝑐 βƒ— 0 βƒ— = |𝒂 βƒ— |𝟐 + π‘Ž βƒ—. 𝑏 βƒ— + π‘Ž βƒ—. 𝑐 βƒ— 0 βƒ— = |π‘Ž βƒ— |2 + π‘Ž βƒ—. 𝑏 βƒ— + 𝒄 βƒ—. 𝒂 βƒ— 0 = 12 + π‘Ž βƒ—. 𝑏 βƒ— + 𝑐 βƒ—. π‘Ž βƒ— π‘Ž βƒ—. 𝑏 βƒ— + 𝑐 βƒ—. π‘Ž βƒ— = βˆ’1 Also, 𝒃 βƒ— . (𝒂 βƒ— + 𝒃 βƒ— + 𝒄 βƒ—) = 𝑏 βƒ— . π‘Ž βƒ— + 𝑏 βƒ—. 𝑏 βƒ— + 𝑏 βƒ— . 𝑐 βƒ— 𝑏 βƒ— . 0 βƒ— = 𝑏 βƒ—. π‘Ž βƒ— + 𝑏 βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— 0 = 𝒃 βƒ—. 𝒂 βƒ— + 𝑏 βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— 0 = 𝒂 βƒ—. 𝒃 βƒ— + 𝑏 βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— 0 = π‘Ž βƒ—. 𝑏 βƒ— + 𝒃 βƒ—. 𝒃 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— 0 = π‘Ž βƒ—. 𝑏 βƒ— + |𝒃 βƒ— |2 + 𝑏 βƒ— . 𝑐 βƒ— 0 = π‘Ž βƒ—. 𝑏 βƒ— + 12 + 𝑏 βƒ— . 𝑐 βƒ— π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ— = βˆ’1 Also 𝒄 βƒ— . (𝒂 βƒ— + 𝒃 βƒ— + 𝒄 βƒ—) = 𝑐 βƒ— . π‘Ž βƒ— + 𝑐 βƒ— . 𝑏 βƒ— + 𝑐 βƒ— . 𝑐 βƒ— 𝑐 βƒ—. 0 βƒ— = 𝑐 βƒ—. π‘Ž βƒ— + 𝑐 βƒ—. 𝑏 βƒ— + 𝑐 βƒ—. 𝑐 βƒ— 0 = 𝑐 βƒ—. π‘Ž βƒ— + 𝒄 βƒ—. 𝒃 βƒ— + 𝑐 βƒ—. 𝑐 βƒ— 0 = 𝑐 βƒ—. π‘Ž βƒ— + 𝒃 βƒ—. 𝒄 βƒ— + 𝑐 βƒ—. 𝑐 βƒ— 0 = 𝑐 βƒ—. π‘Ž βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + 𝒄 βƒ—. 𝒄 βƒ— 0 = 𝑐 βƒ—. π‘Ž βƒ— + 𝑏 βƒ—. 𝑐 βƒ— + |𝑐 βƒ— |2 0 = 𝑐 βƒ—. π‘Ž βƒ—+ 𝑏 βƒ— . 𝑐 βƒ— + 12 𝑐 βƒ—. π‘Ž βƒ— + 𝑏 βƒ—. 𝑐 βƒ— = βˆ’1 Adding (1), (2) and (3) (π‘Ž βƒ—. 𝑏 βƒ— + 𝑐 βƒ—. π‘Ž βƒ—) + (π‘Ž βƒ—. 𝑏 βƒ— + 𝑏 βƒ—. 𝑐 βƒ—) + (𝑐 βƒ—. π‘Ž βƒ— + 𝑏 βƒ—. 𝑐 βƒ—) = βˆ’1 + (–1) + (–1) 2π‘Ž βƒ—. 𝑏 βƒ— + 2𝑐 βƒ—. π‘Ž βƒ— + 2𝑏 βƒ—. 𝑐 βƒ— = βˆ’3 2(π‘Ž βƒ—. 𝑏 βƒ— + 𝑏. 𝑐 βƒ— + 𝑐 βƒ—. π‘Ž βƒ—) = βˆ’3 𝒂 βƒ—. 𝒃 βƒ— + 𝒃 βƒ—. 𝒄 βƒ— + 𝒄 βƒ—. 𝒂 βƒ— = (βˆ’πŸ‘)/𝟐


Page 2

Last updated at April 21, 2021 by Teachoo

Hello! Teachoo has made the content for you with a lot of effort and love. Since provides this answer for free, we need you support to make more vidoes. Can you please support us by donating some money? Please click on this link to make a donation

If a b c are three unit vectors such that a+b+c=1 and a is perpendicular to b

Did you like the solution? Help Teachoo do more. Please click on this link to make a donation

Next: Ex 10.3, 15 Important β†’

Ex 10.3, 14 If either vector π‘Ž βƒ— = 0 βƒ— or 𝑏 βƒ— = 0 βƒ—, then π‘Ž βƒ—. 𝑏 βƒ— = 0 But the converse need not be true. justify your answer with an example. Converse: If π‘Ž βƒ— . 𝑏 βƒ— = 0, then either π‘Ž βƒ— = 0 βƒ— or 𝑏 βƒ— = 0 βƒ— Let 𝒂 βƒ— = π’Š Μ‚ + 𝒋 Μ‚ + π’Œ Μ‚ = 1𝑖 Μ‚ + 1𝑗 Μ‚ + 1π‘˜ Μ‚ and 𝒃 βƒ— = π’Š Μ‚ + 𝒋 Μ‚ - 2π’Œ Μ‚ = 1𝑖 Μ‚ + 1𝑗 Μ‚ – 2π‘˜ Μ‚ π‘Ž βƒ— . 𝑏 βƒ— = 1.1 + 1.1 + 1(βˆ’2) = 1 + 1 βˆ’ 2 = 0 Hence, π‘Ž βƒ— . 𝑏 βƒ— = 0 but π‘Ž βƒ— β‰  0 βƒ— and 𝑏 βƒ— β‰  0 βƒ— Thus, the converse need not be true.

If a b c are three unit vectors such that a+b+c=1 and a is perpendicular to b

Updated April 25, 2017

By Ariel Balter, Ph.D.

To construct a vector that is perpendicular to another given vector, you can use techniques based on the dot-product and cross-product of vectors. The dot-product of the vectors A = (a1, a2, a3) and B = (b1, b2, b3) is equal to the sum of the products of the corresponding components: Aβˆ™B = a1_b2 + a2_b2 + a3_b3. If two vectors are perpendicular, then their dot-product is equal to zero. The cross-product of two vectors is defined to be AΓ—B = (a2_b3 - a3_b2, a3_b1 - a1_b3, a1_b2 - a2*b1). The cross product of two non-parallel vectors is a vector that is perpendicular to both of them.

    Write down a hypothetical, unknown vector V = (v1, v2).

    Calculate the dot-product of this vector and the given vector. If you are given U = (-3,10), then the dot product is Vβˆ™U = -3 v1 + 10 v2.

    Set the dot-product equal to 0 and solve for one unknown component in terms of the other: v2 = (3/10) v1.

    Pick any value for v1. For instance, let v1 = 1.

    Solve for v2: v2 = 0.3. The vector V = (1,0.3) is perpendicular to U = (-3,10). If you chose v1 = -1, you would get the vector V’ = (-1, -0.3), which points in the opposite direction of the first solution. These are the only two directions in the two-dimensional plane perpendicular to the given vector. You can scale the new vector to whatever magnitude you want. For instance, to make it a unit vector with magnitude 1, you would construct W = V/(magnitude of v) = V/(sqrt(10) = (1/sqrt(10), 0.3/sqrt(10).

    Write down a hypothetical unknown vector V = (v1, v2, v3).

    Calculate the dot-product of this vector and the given vector. If you are given U = (10, 4, -1), then Vβˆ™U = 10 v1 + 4 v2 - v3.

    Set the dot-product equal to zero. This is the equation for a plane in three dimensions. Any vector in that plane is perpendicular to U. Any set of three numbers that satisfies 10 v1 + 4 v2 - v3 = 0 will do.

    Choose arbitrary values for v1 and v2, and solve for v3. Let v1 = 1 and v2 = 1. Then v3 = 10 + 4 = 14.

    Perform the dot-product test to show that V is perpendicular to U: By the dot-product test, the vector V = (1, 1, 14) is perpendicular to the vector U: Vβˆ™U = 10 + 4 - 14 = 0.

    Choose any arbitrary vector that is not parallel to the given vector. If a vector Y is parallel to a vector X, then Y = a*X for some non-zero constant a. For simplicity, use one of the unit basis vectors, such as X = (1, 0, 0).

    Calculate the cross product of X and U, using U = (10, 4, -1): W = XΓ—U = (0, 1, 4).

    Check that W is perpendicular to U. Wβˆ™U = 0 + 4 - 4 = 0. Using Y = (0, 1, 0) or Z = (0, 0, 1) would give different perpendicular vectors. They would all lie in the plane defined by the equation 10 v1 + 4 v2 - v3 = 0.