A variety of problems have emerged from our extensive use of computers

  1. K. K. K. Fong and S. K. S. Wong, Wi-Fi Adoption and Security in Hong Kong, Asian Social Science, Vol. 12, No. 6, pp. 1–22, 2016.

    Google Scholar 

  2. Pace Technical: “Is Fast Wi-Fi the Most Basic of Human Needs?” https://www.pacetechnical.com/fast-wifi-basic-human-needs/.

  3. Berk-Tek, A NEXANS Company. “Basic Human Needs: Food, shelter, and…Wireless??” Aug 15th, 2017 https://eipblog.net/2017/08/15/basic-human-needs-food-shelter-andwireless/.

  4. S. McLeod, Maslow’s hierarchy of needs, Simply Psychology, Vol. 1, pp. 1–8, 2007.

    Google Scholar 

  5. G. M. D. T. Forecast, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022, Update, Vol. 2017, p. 2022, 2019.

    Google Scholar 

  6. V. Bahl, wireless research centers: building the future with wireless technology, ACM SIGMOBILE Mob. Comput. Commun. Rev., Vol. 4, No. 2, p. 37, 2000.

    MathSciNet  Google Scholar 

  7. F. R. Gfeller and U. Bapst, Wireless in-house data communication via diffuse infrared radiation, Proceedings of the IEEE, Vol. 67, No. 11, pp. 1474–1486, 1979.

    Google Scholar 

  8. P. Freret, R. Eschenbach, D. Crawford and P. Braisted, Applications of spread-spectrum radio to wireless terminal communications, Proceedings of the IEEE NTC, Vol. 4, pp. 244–248, 1980.

    Google Scholar 

  9. Pahlavan, K., 1984, January. A review of wireless in-house data communication systems. In Proceedings Computer Networking Symposium (pp. 129-130). IEEE Computer Society.

  10. K. Pahlavan, Wireless communications for office information networks, IEEE Communications Magazine, Vol. 23, No. 6, pp. 19–27, 1985.

    Google Scholar 

  11. Abramson, N., 1970, November. THE ALOHA SYSTEM: another alternative for computer communications. In Proceedings of the November 17-19, 1970, fall joint computer conference (pp. 281-285).

  12. K. Pahlavan and A. H. Levesque, Wireless data communications, Proceedings of the IEEE, Vol. 82, No. 9, pp. 1398–1430, 1994.

    Google Scholar 

  13. K. Pahlavan, Wireless intra-office networks, ACM Transactions on Information Systems (TOIS), Vol. 6, No. 3, pp. 277–302, 1988.

    Google Scholar 

  14. Marcus, M.J., 1985, December. Recent US regulatory decisions on civil uses of spread spectrum. In IEEE GLOBECOM (Vol. 16, pp. 1-16).

  15. Tuch, B.J., 1991, May. An ISM Band Local Area Network: WaveLAN. In IEEE Workshop on Local Area Networks, Worcester Polytechnic Institute, Worcester Massachusetts (pp. 103-111).

  16. B. Tuch, Development of WaveLAN®, an ISM band wireless LAN, AT&T Technical Journal, Vol. 72, No. 4, pp. 27–37, 1993.

    Google Scholar 

  17. Freeburg, T.A., 1991. A New Technology for High Speed Wireless Local Area Networks, In IEEE Workshop on Local Area Networks, Worcester Polytechnic Institute, Worcester Massachusetts (pp. 127-139).

  18. T. A. Freeburg, Enabling technologies for wireless in-building network communications-four technical challenges, four solutions, IEEE Communications Magazine, Vol. 29, No. 4, pp. 58–64, 1991.

    Google Scholar 

  19. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi and F. Gutierrez, Millimeter wave mobile communications for 5G cellular: It will work!, IEEE access, Vol. 1, pp. 335–349, 2013.

    Google Scholar 

  20. K. Pahlavan, R. Ganesh and T. Hotaling, Multipath propagation measurements on manufacturing floors at 910 MHz, Electronics Letters, Vol. 25, No. 3, pp. 225–227, 1989.

    Google Scholar 

  21. S. J. Howard and K. Pahlavan, Measurement and analysis of the indoor radio channel in the frequency domain, IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 5, pp. 751–755, 1990.

    Google Scholar 

  22. S. J. Howard and K. Pahlavan, Doppler spread measurements of indoor radio channel, Electronics Letters, Vol. 26, No. 2, pp. 107–109, 1990.

    Google Scholar 

  23. R. Ganesh and K. Pahlavan, On arrival of paths in fading multipath indoor radio channels, Electronics Letters, Vol. 25, No. 12, pp. 763–765, 1989.

    Google Scholar 

  24. R. Ganesh and K. Pahlavan, Statistical modelling and computer simulation of indoor radio channel, IEE Proceedings I (Communications, Speech and Vision), Vol. 138, No. 3, pp. 153–161, 1991.

    Google Scholar 

  25. S. J. Howard and K. Pahlavan, Autoregressive modeling of wide-band indoor radio propagation, IEEE Transactions on Communications, Vol. 40, No. 9, pp. 1540–1552, 1992.

    Google Scholar 

  26. T. A. Sexton and K. Pahlavan, Channel modeling and adaptive equalization of indoor radio channels, IEEE Journal on Selected Areas in Communications, Vol. 7, No. 1, pp. 114–121, 1989.

    Google Scholar 

  27. K. Pahlavan and M. Chase, Spread-spectrum multiple-access performance of orthogonal codes for indoor radio communications, IEEE Transactions on Communications, Vol. 38, No. 5, pp. 574–577, 1990.

    Google Scholar 

  28. K. Zhang and K. Pahlavan, An integrated voice/data system for mobile indoor radio networks, IEEE transactions on Vehicular Technology, Vol. 39, No. 1, pp. 75–82, 1990.

    Google Scholar 

  29. O’sullivan, J.D., Daniels, G.R., Percival, T.M., Ostry, D.I. and Deane, J.F., Commonwealth Scientific and Industrial Research Organization (CSIRO), 1996. Wireless LAN. U.S. Patent 5,487,069.

  30. K. Pahlavan and J. L. Holsinger, Voice-band data communication modems-a historical review: 1919-1988, IEEE Communications Magazine, Vol. 26, No. 1, pp. 16–27, 1988.

    Google Scholar 

  31. P. Monsen, Theoretical and measured performance of a DFE modem on a fading multipath channel, IEEE Transactions on Communications, Vol. 25, No. 10, pp. 1144–1153, 1977.

    Google Scholar 

  32. P. E. R. K. Enge and D. I. L. I. P. V. Sarwate, Spread-spectrum multiple-access performance of orthogonal codes: Linear receivers, IEEE Transactions on Communications, Vol. 35, No. 12, pp. 1309–1319, 1987.

    Google Scholar 

  33. Hayes V., 1991, May.Wireless LANs- Standards Activities in IEEE In IEEE Workshop on Local Area Networks, Worcester Polytechnic Institute, Worcester Massachusetts (pp. 58-63).

  34. The 1st IEEE Workshop on Wireless LAN, Worcester, MA, May 9-10, 1991. http://www.cwins.wpi.edu/wlans91/index.html.

  35. T. Wilkinson, T. G. Phipps and S. K. Barton, A report on HIPERLAN standardization, International Journal of Wireless Information Networks, Vol. 2, No. 2, pp. 99–120, 1995.

    Google Scholar 

  36. E. Ayanoglu, K. Y. Eng and M. J. Karol, Wireless ATM: Limits, challenges, and proposals, IEEE Personal Communications, Vol. 3, No. 4, pp. 18–34, 1996.

    Google Scholar 

  37. T. Liu, P. Bahl and I. Chlamtac, Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks, IEEE Journal on selected areas in communications, Vol. 16, No. 6, pp. 922–936, 1998.

    Google Scholar 

  38. K. Pahlavan, A. Zahedi and P. Krishnamurthy, Wideband local access: Wireless LAN and wireless ATM, IEEE Communications Magazine, Vol. 35, No. 11, pp. 34–40, 1997.

    Google Scholar 

  39. Pahlavan, K. and Levesque, A.H., 1995. Wireless information networks. John Wiley & Sons.

  40. Rappaport, T.S., 1996. Wireless communications: principles and practice. New Jersey: prentice hall PTR.

  41. Khun-Jush, Jamshid, Peter Schramm, Udo Wachsmann, and Fabian Wenger, 1999. Structure and performance of the HIPERLAN/2 physical layer. In Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No. 99CH36324), vol. 5, pp. 2667-2671. IEEE.

  42. Doufexi, A., Armour, S., Butler, M., Nix, A., Bull, D., McGeehan, J. and Karlsson, P., 2002. A comparison of the HIPERLAN/2 and IEEE 802.11 a wireless LAN standard. IEEE Communications magazine, 40(5), pp.172-180.

  43. K. Pahlavan, P. Krishnamurthy, A. Hatami, M. Ylianttila, J. P. Makela, R. Pichna and J. Vallstron, Handoff in hybrid mobile data networks, IEEE Personal Communications, Vol. 7, No. 2, pp. 34–47, 2000.

    Google Scholar 

  44. Hasan, S.F., Siddique, N.H. and Chakraborty, S., 2009, May. Femtocell versus Wi-Fi-A survey and comparison of architecture and performance. In 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, pp. 916-920. IEEE.

  45. H. Zhang, Y. Dong, J. Cheng, M. J. Hossain and V. C. Leung, Fronthauling for 5G LTE-U ultra-dense cloud small cell networks, IEEE Wireless Communications, Vol. 23, No. 6, pp. 48–53, 2016.

    Google Scholar 

  46. Andrews, J.G., Ghosh, A. and Muhamed, R., 2007. Fundamentals of WiMAX: understanding broadband wireless networking. Pearson Education.

  47. Jensen, M.A., 2016, June. A history of MIMO wireless communications. In 2016 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 681-682). IEEE.

  48. S. M. Alamouti, A simple transmit diversity technique for wireless communications, IEEE Journal on selected areas in communications, Vol. 16, No. 8, pp. 1451–1458, 1998.

    Google Scholar 

  49. V. Tarokh, N. Seshadri and A. R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction, IEEE transactions on information theory, Vol. 44, No. 2, pp. 744–765, 1998.

    MathSciNet  MATH  Google Scholar 

  50. Alamouti, S. and Tarokh, V., New Cingular Wireless Services Inc, 2001. Transmitter diversity technique for wireless communications. U.S. Patent 6,185,258.

  51. G. J. Foschini and M. J. Gans, On limits of wireless communications in a fading environment when using multiple antennas, Wireless personal communications, Vol. 6, No. 3, pp. 311–335, 1998.

    Google Scholar 

  52. Bianchi, G., 2000. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on selected areas in communications, 18(3), pp.535-547.

  53. Wikipedia: IEEE 802.11: https://en.wikipedia.org/wiki/IEEE_802.11.

  54. The Second IEEE Workshop on Wireless LAN, Worcester, MA, October 24-26, 1996 http://www.cwins.wpi.edu/wlans96/index.html.

  55. MacWorld Keynote: Steve Jobs on Skyhook Technology (YouTube posting date: Jan 10, 2012) on https://www.youtube.com/watch?v=F624yzZ0Ysc.

  56. K. Pahlavan, P. Krishnamurthy and A. Beneat, Wideband radio propagation modeling for indoor geolocation applications, IEEE Communications Magazine, Vol. 36, No. 4, pp. 60–65, 1998.

    Google Scholar 

  57. K. Pahlavan, Indoor Geolocation Science and Technology: at the Emergence of Smart World and IoT, Rivers PublishersThe Netherlands, 2019.

    Google Scholar 

  58. Bahl, Paramvir, and Venkata N. Padmanabhan, 2000. RADAR: An in-building RF-based user location and tracking system. In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (vol. 2), pp. 775-784. IEEE.

  59. Li, X., Pahlavan, K., Latva-Aho, M. and Ylianttila, M., 2000, September. Indoor geolocation using OFDM signals in HIPERLAN/2 wireless LANs. In 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No. 00TH8525) (Vol. 2, pp. 1449-1453). IEEE.

  60. Prasithsangaree, P., Krishnamurthy, P. and Chrysanthis, P., 2002, September. On indoor position location with wireless LANs. In The 13th IEEE international symposium on personal, indoor, and mobile radio communications (Vol. 2, pp. 720-724). IEEE.

  61. Kaemarungsi, K. and Krishnamurthy, P., 2004, March. Modeling of indoor positioning systems based on location fingerprinting. In IEEE INFOCOM 2004 (Vol. 2, pp. 1012-1022). IEEE.

  62. K. Pahlavan, F. Akgul, Y. Ye, T. Morgan, F. Alizadeh-Shabdiz, M. Heidari and C. Steger, Taking positioning indoors - Wi-Fi localization and GNSS, Inside GNSS, Vol. 5, No. 3, pp. 40–47, 2010.

    Google Scholar 

  63. Mobility trends report, Apple Maps, https://www.apple.com/covid19/mobility .

  64. Ye, Y., Akgul, F.O., Bardshady, N. and Pahlavan, K., 2011, April. Performance of hybrid Wi-Fi localization for cooperative robotics applications. In IEEE International Conference on Technologies for Practical Robot Applications (pp. 11-12).

  65. Bargshady, N., Pahlavan, K. and Alsindi, N.A., 2015, February. Hybrid Wi-Fi/UWB, cooperative localization using particle filter. In 2015 International Conference on Computing, Networking and Communications (ICNC) (pp. 1055-1060). IEEE.

  66. L. H. Chen, E. H. K. Wu, M. H. Jin and G. H. Chen, Intelligent fusion of Wi-Fi and inertial sensor-based positioning systems for indoor pedestrian navigation, IEEE Sensors Journal, Vol. 14, No. 11, pp. 4034–4042, 2014.

    Google Scholar 

  67. N. Bargshady, G. Garza and K. Pahlavan, Precise tracking of things via hybrid 3-D fingerprint database and kernel method particle filter, IEEE Sensors Journal, Vol. 16, No. 24, pp. 8963–8971, 2016.

    Google Scholar 

  68. N. Tadayon, M. T. Rahman, S. Han, S. Valaee and W. Yu, Decimeter ranging with channel state information, IEEE Transactions on Wireless Communications, Vol. 18, No. 7, pp. 3453–3468, 2019.

    Google Scholar 

  69. Pahlavan, K., Ying, J., Li, Z., Solovey, E., Loftus, J. P., and Dong, Z. RF cloud for cyber intelligence, IEEE Access, 8, pp.89976-89987.

  70. Jakes, W.C., 1974. Mobile communication design fundamentals. John Wiley & Sons.

  71. Pahlavan, K. and Matthews, J.W., 1980. Performance of channel measurement techniques over fading channels. In Proceeding of the IEEE NTC (Vol. 3, pp. 58-5).

  72. Rahman, M.T., Tadayon, N., Han, S. and Valaee, S., 2018, December. LocHunt: Angle of Arrival Based Location Estimation in Harsh Multipath Environments. In 2018 IEEE Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE.

  73. Kotaru, M. and Katti, S., 2017. Position tracking for virtual reality using commodity Wi-Fi. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 68-78).

  74. X. Wang, L. Gao, S. Mao and S. Pandey, CSI-based fingerprinting for indoor localization: A deep learning approach, IEEE Transactions on Vehicular Technology, Vol. 66, No. 1, pp. 763–776, 2016.

    Google Scholar 

  75. T. Roos, P. Myllymäki, H. Tirri, P. Misikangas and J. Sievänen, A probabilistic approach to WLAN user location estimation, International Journal of Wireless Information Networks, Vol. 9, No. 3, pp. 155–164, 2002.

    Google Scholar 

  76. Cheng, Y.C., Chawathe, Y., LaMarca, A. and Krumm, J., 2005, June. Accuracy characterization for metropolitan-scale Wi-Fi localization. In Proceedings of the 3rd international conference on Mobile systems, applications, and services (pp. 233-245).

  77. A. W. T. Tsui, W. C. Lin, W. J. Chen, P. Huang and H. H. Chu, Accuracy performance analysis between war driving and war walking in metropolitan Wi-Fi localization, IEEE Transactions on Mobile Computing, Vol. 9, No. 11, pp. 1551–1562, 2010.

    Google Scholar 

  78. Fu, R., Ye, Y., Yang, N. and Pahlavan, K., 2011, September. Doppler spread analysis of human motions for body area network applications. In 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 2209-2213). IEEE.

  79. Y. Geng, J. Chen, R. Fu, G. Bao and K. Pahlavan, Enlighten wearable physiological monitoring systems: On-body RF characteristics based human motion classification using a support vector machine, IEEE transactions on mobile computing, Vol. 15, No. 3, pp. 656–671, 2015.

    Google Scholar 

  80. Pu, Q., Gupta, S., Gollakota, S. and Patel, S., 2013, September. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th annual international conference on Mobile computing & networking (pp. 27-38).

  81. Y. Ma, G. Zhou and S. Wang, Wi-Fi sensing with channel state information: A survey, ACM Computing Surveys (CSUR), Vol. 52, No. 3, pp. 1–36, 2019.

    Google Scholar 

  82. Z. Dong, F. Li, J. Ying and K. Pahlavan, Indoor motion detection using Wi-Fi channel state information in flat floor environments versus in staircase environments, Sensors, Vol. 18, No. 7, p. 2177, 2018.

    Google Scholar 

  83. Ali, K., Liu, A.X., Wang, W. and Shahzad, M., 2015, September. Keystroke recognition using Wi-Fi signals. In Proceedings of the 21st annual international conference on mobile computing and networking (pp. 90-102).

  84. Z. Wang, B. Guo, Z. Yu and X. Zhou, Wi-Fi CSI-based behavior recognition: From signals and actions to activities, IEEE Communications Magazine, Vol. 56, No. 5, pp. 109–115, 2018.

    Google Scholar 

  85. L. Shi, M. Li, S. Yu and J. Yuan, BANA: Body area network authentication exploiting channel characteristics, IEEE Journal on selected Areas in Communications, Vol. 31, No. 9, pp. 1803–1816, 2013.

    Google Scholar 

  86. Shi, C., Liu, J., Liu, H. and Chen, Y., 2017, July. Smart user authentication through actuation of daily activities leveraging Wi-Fi-enabled IoT. In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing (pp. 1-10).

  87. He, Y., Chen, Y., Hu, Y. and Zeng, B., 2020. Wi-Fi Vision: Sensing, Recognition, and Detection with Commodity MIMO-OFDM Wi-Fi. IEEE Internet of Things Journal.

  88. T. Aono, K. Higuchi, T. Ohira, B. Komiyama and H. Sasaoka, Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels, IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, pp. 3776–3784, 2005.

    Google Scholar 

  89. Mathur, S., Trappe, W., Mandayam, N., Ye, C. and Reznik, A., 2008, September. Radio-telepathy: extracting a secret key from an unauthenticated wireless channel. In Proceedings of the 14th ACM international conference on Mobile computing and networking (pp. 128-139).

  90. R. Melki, H. N. Noura, M. M. Mansour and A. Chehab, A survey on OFDM physical layer security, Physical Communication, Vol. 32, pp. 1–30, 2019.

    Google Scholar 

  91. Shakiba-Herfeh, M., Chorti, A. and Poor, H.V., 2020. Physical Layer Security: Authentication, Integrity and Confidentiality. arXiv preprint arXiv:2001.07153.

  92. Sheth, A., Seshan, S. and Wetherall, D., 2009, May. Geo-fencing: Confining Wi-Fi coverage to physical boundaries. In International Conference on Pervasive Computing (pp. 274-290). Springer, Berlin, Heidelberg.


Page 2

Maslow’s hierarchy of human needs with an additional layer referring to Wi-Fi as enabler of these needs