A (colony/habitat/biofilm) is a mixed population of microbes growing together on surfaces.

  1. Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    CAS  PubMed  Google Scholar 

  2. Flemming, H. C., Neu, T. R. & Wozniak, D. J. The EPS matrix: The “house of biofilm cells”. J. Bacteriol. 189, 7945–7947 (2007).

  3. van Wolferen, M., Orell, A. & Albers, S.-V. Archaeal biofilm formation. Nat. Rev. Microbiol. 16, 699–713 (2018).

    PubMed  Google Scholar 

  4. Aguilera, A., Souza-Egipsy, V., Gómez, F. & Amils, R. Development and structure of eukaryotic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microb. Ecol. 53, 294–305 (2007).

    PubMed  Google Scholar 

  5. Penesyan, A., Gillings, M. & Paulsen, I. T. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20, 5286–5298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563 (2016).

    CAS  PubMed  Google Scholar 

  7. Yadav, M. K. Role of biofilms in environment pollution and control. in Microbial Biotechnology (eds J. Patra, C. Vishnuprasad, & G. D’as) (Springer, 2017).

  8. de Vos, W. M. Microbial biofilms and the human intestinal microbiome. NPJ Biofilms Microbiomes 1, 15005 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Carthey, A. J. R., Blumstein, D. T., Gallagher, R. V., Tetu, S. G. & Gillings, M. R. Conserving the holobiont. Funct. Ecol. https://doi.org/10.1111/1365-2435.13504 (2019).

  10. National Institutes of Health. Research on microbial biofilms, Report No PA-03-047 (2002).

  11. Schultz, M. P., Bendick, J. A., Holm, E. R. & Hertel, W. M. Economic impact of biofouling on a naval surface ship. Biofouling 27, 87–98 (2011).

    CAS  PubMed  Google Scholar 

  12. Galié, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J. & Lombó, F. Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 9, 898–898 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Chan, S. et al. Bacterial release from pipe biofilm in a full-scale drinking water distribution system. NPJ Biofilms Microbiomes 5, 9 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Alberts, B. et al. An overview of gene control. in Molecular Biology of the Cell. 4th edn. (Garland Science, 2002).

  15. O’Connor, C. M. & Adams, J. U. Essentials of Cell Biology. (NPG Education, 2010).

  16. Shapiro, J. A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81–104 (1998).

    CAS  PubMed  Google Scholar 

  17. Leys, S. & Meech, R. Physiology of coordination in sponges. Can. J. Zool. 84, 288–306 (2006).

    Google Scholar 

  18. Koseska, A., Ullner, E., Volkov, E., Kurths, J. & García-Ojalvo, J. Cooperative differentiation through clustering in multicellular populations. J. Theor. Biol. 263, 189–202 (2010).

    CAS  PubMed  Google Scholar 

  19. Wartlick, O., Kicheva, A. & González-Gaitán, M. Morphogen gradient formation. Cold Spring Harb. Perspect. Biol. 1, a001255–a001255 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Shapiro, J. A. Bacteria as multicellular organisms. Sci. Am. 258, 82–89 (1988).

    Google Scholar 

  21. Costeron, J. W. The Biofilm Primer. (Springer-Verlag, Berlin, Heidelberg, 2007).

  22. Futo, M. et al. Embryo-like features in developing Bacillus subtilis biofilms. Mol. Biol. Evol. 38, 31–47 (2021).

    CAS  PubMed  Google Scholar 

  23. Ereshefsky, M. & Pedroso, M. Biological individuality: the case of biofilms. Biol. Philos. 28, 331–349 (2013).

    Google Scholar 

  24. Flemming, H.-C. et al. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond. NPJ Biofilms Microbiomes 7, 10 (2021).

    PubMed  PubMed Central  Google Scholar 

  25. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS  PubMed  Google Scholar 

  26. Hung, C. et al. Escherichia coli biofilms have an organized and complex extracellular matrix structure. mBio 4, e00645–00613 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. & van Wezel, G. P. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat. Rev. Microbiol. 12, 115–124 (2014).

    CAS  PubMed  Google Scholar 

  28. Joshi, R. V., Gunawan, C. & Mann, R. We are one: multispecies metabolism of a biofilm consortium and their treatment strategies. Front. Microbiol. 12, 635432–635432 (2021).

    PubMed  PubMed Central  Google Scholar 

  29. Seckbach, J. & Oren, A. Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. (Springer, 2010).

  30. Dragoš, A. et al. Division of labor during biofilm matrix production. Curr. Biol. 28, 1903–1913.e1905 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Konovalova, A., Petters, T. & Søgaard-Andersen, L. Extracellular biology of Myxococcus xanthus. FEMS Microbiol. Rev. 34, 89–106 (2010).

    CAS  PubMed  Google Scholar 

  32. Van Gestel, J., Vlamakis, H. & Kolter, R. Division of labor in biofilms: The ecology of cell differentiation. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MB-0002-2014 (2015).

  33. Higgs, P., Hartzell, P. L., Holkenbrink, C. & Hoiczyk, E. in Myxobacteria: genomics, cellular and molecular biology (eds Z. Yang & P. Higgs) 51–77 (Horizon Scientific Press, 2014).

  34. Haagensen, J. A. J. et al. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacteriol. 189, 28 (2007).

    CAS  PubMed  Google Scholar 

  35. Lopez, D., Vlamakis, H. & Kolter, R. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol. Rev. 33, 152–163 (2009).

    CAS  PubMed  Google Scholar 

  36. Veening, J. W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).

    CAS  PubMed  Google Scholar 

  37. Marlow, V. L. et al. The prevalence and origin of exoprotease-producing cells in the Bacillus subtilis biofilm. Microbiology 160, 56–66 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilking, J. N. et al. Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 110, 848–852 (2013).

    CAS  PubMed  Google Scholar 

  39. Stoodley, P., deBeer, D. & Lewandowski, Z. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60, 2711 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rooney, L. M., Amos, W. B., Hoskisson, P. A. & McConnell, G. Intra-colony channels in E. coli function as a nutrient uptake system. ISME J. https://doi.org/10.1038/s41396-020-0700-9 (2020).

  41. Abisado, R. G., Benomar, S., Klaus, J. R., Dandekar, A. A. & Chandler, J. R. Bacterial quorum sensing and microbial community interactions. mBio 9, e02331–02317 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barraud, N., Kelso, M. J., Rice, S. A. & Kjelleberg, S. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr. Pharm. Des. 21, 31–42 (2015).

    CAS  PubMed  Google Scholar 

  43. Sauer, K. et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186, 7312–7326 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rumbaugh, K. P. & Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 18, 571–586 (2020).

    CAS  PubMed  Google Scholar 

  45. Gjermansen, M., Ragas, P., Sternberg, C., Molin, S. & Tolker-Nielsen, T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. 7, 894–904 (2005).

    CAS  PubMed  Google Scholar 

  46. Thormann, K. M., Saville, R. M., Shukla, S. & Spormann, A. M. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J. Bacteriol. 187, 1014–1021 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dunn, J. D. et al. Eat prey, live: Dictyostelium discoideum as a model for cell-autonomous defenses. Front. Immunol. https://doi.org/10.3389/fimmu.2017.01906 (2018).

  48. Huber, R. J. & O’Day, D. H. Extracellular matrix dynamics and functions in the social amoeba Dictyostelium: a critical review. Biochim. Biophys. Acta 1861, 2971–2980 (2017).

    CAS  Google Scholar 

  49. Sternfeld, J. & David, C. N. Oxygen gradients cause pattern orientation in Dictyostelium cell clumps. J. Cell Sci. 50, 9–17 (1981).

    CAS  PubMed  Google Scholar 

  50. Santos, T., Viala, D., Chambon, C., Esbelin, J. & Hébraud, M. Listeria monocytogenes biofilm adaptation to different temperatures seen through shotgun proteomics. Front. Nutr. https://doi.org/10.3389/fnut.2019.00089 (2019).

  51. Penesyan, A., Nagy, S. S., Kjelleberg, S., Gillings, M. R. & Paulsen, I. T. Rapid microevolution of biofilm cells in response to antibiotics. NPJ Biofilms Microbiomes 5, 34 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Turner, J. S. The Extended Organism: The Physiology of Animal-Built Structures. (Harvard University Press, 2000).

  53. Turner, J. S. Homeostasis and the physiological dimension of niche construction theory in ecology and evolution. Evol. Ecol. 30, 203–219 (2016).

    Google Scholar 

  54. Hengge, R. Linking bacterial growth, survival, and multicellularity—small signaling molecules as triggers and drivers. Curr. Opin. Microbiol. 55, 57–66 (2020).

    CAS  PubMed  Google Scholar 

  55. Elias, S. & Banin, E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36, 990–1004 (2012).

    CAS  PubMed  Google Scholar 

  56. Rendueles, O. & Ghigo, J.-M. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol. Rev. 36, 972–989 (2012).

    CAS  PubMed  Google Scholar 

  57. Oliveira, N. M. et al. Biofilm formation as a response to ecological competition. PLoS Biol. 13, e1002191 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Vega, N. & Gore, J. Biofilms: How structure emerges from conflict. Curr. Biol. 25, R800–802 (2015).

    CAS  PubMed  Google Scholar 

  59. Bernardi, S. et al. Subinhibitory antibiotic concentrations enhance biofilm formation of clinical Enterococcus faecalis isolates. Antibiotics https://doi.org/10.3390/antibiotics10070874 (2021).

  60. Penesyan, A., Paulsen, I. T., Gillings, M. R., Kjelleberg, S. & Manefield, M. J. Secondary effects of antibiotics on microbial biofilms. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.02109 (2020).

  61. Riley, M. A. & Wertz, J. E. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137 (2002).

    CAS  PubMed  Google Scholar 

  62. Penesyan, A., Marshall‐Jones, Z., Holmstrom, C., Kjelleberg, S. & Egan, S. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol. Ecol. 69, 113–124 (2009).

    CAS  PubMed  Google Scholar 

  63. Matz, C. et al. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE 3, e2744 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Ahmed, M. N. et al. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. NPJ Biofilms Microbiomes 6, 28 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Santos-Lopez, A., Marshall, C. W., Scribner, M. R., Snyder, D. J. & Cooper, V. S. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 8, e47612 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Paun, V. I., Lavin, P., Chifiriuc, M. C. & Purcarea, C. First report on antibiotic resistance and antimicrobial activity of bacterial isolates from 13,000-year old cave ice core. Sci. Rep. 11, 514 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    PubMed  Google Scholar 

  68. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Michod, R. E. Evolution of individuality during the transition from unicellular to multicellular life. Proc. Natl Acad. Sci. USA 104, 8613 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Szathmáry, E. & Smith, J. M. The major evolutionary transitions. Nature 374, 227–232 (1995).

    PubMed  Google Scholar 

  71. Nikolaev, Y. A. & Plakunov, V. K. Biofilm—“City of microbes” or an analogue of multicellular organisms? Microbiology 76, 125–138 (2007).

    CAS  Google Scholar 

  72. Guerrero, R., Margulis, L. & Berlanga, M. Symbiogenesis: the holobiont as a unit of evolution. Int. Microbiol. 16, 133–143 (2013).

    PubMed  Google Scholar 

  73. Rosenberg, E. & Zilber-Rosenberg, I. The Hologenome Concept: Human, Animal and Plant Microbiota (eds Eugene Rosenberg & Ilana Zilber-Rosenberg) (Springer International Publishing, 2013).

  74. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, https://doi.org/10.1371/journal.pbio.1002533 (2016).

  75. Gillings, M. R., Paulsen, I. T. & Tetu, S. G. Ecology and evolution of the human microbiota: fire, farming and antibiotics. Genes 6, 841–857 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Godfrey-Smith, P. Individuality, subjectivity, and minimal cognition. Biol. Philos. 31, 775–796 (2016).

    Google Scholar 

  78. Bourrat, P. & Griffiths, P. E. Multispecies individuals. Hist. Philos. Life Sci. https://doi.org/10.1007/s40656-018-0194-1 (2018).

  79. Nadell, C. D., Xavier, J. B. & Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206–224 (2009).

    CAS  PubMed  Google Scholar 

  80. Velicer, G. J. Social strife in the microbial world. Trends Microbiol. 11, 330–337 (2003).

    CAS  PubMed  Google Scholar 

  81. Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evolut. 16, 178–183 (2001).

    Google Scholar 

  82. Özkaya, Ö., Xavier, K. B., Dionisio, F. & Balbontín, R. Maintenance of microbial cooperation mediated by public goods in single- and multiple-trait scenarios. J. Bacteriol. 199, e00297–00217 (2017).

    PubMed Central  Google Scholar 

  83. Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).

    CAS  PubMed  Google Scholar 

  84. Ereshefsky, M. & Pedroso, M. Rethinking evolutionary individuality. Proc. Natl Acad. Sci. USA 112, 10126–10132 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Clarke, E. Levels of selection in biofilms: multispecies biofilms are not evolutionary individuals. Biol. Philos. 31, 191–212 (2016).

    Google Scholar 

  86. Yang, L. et al. Current understanding of multi-species biofilms. Int. J. Oral Sci. 3, 74–81 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. Doolittle, W. F. & Booth, A. It’s the song, not the singer: an exploration of holobiosis and evolutionary theory. Biol. Philos. 32, 5–24 (2017).

    Google Scholar 

  88. Pedroso, M. Inheritance by recruitment. Biol. Philos. 32, 127–131 (2017).

    Google Scholar 

  89. Pedroso, M. Forming lineages by sticking together. Philos. Theory Pract. Biol. https://doi.org/10.3998/ptpbio.16039257.0011.016 (2018).

  90. Stoodley, P. et al. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl. Environ. Microbiol. 67, 5608–5613 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the Natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    CAS  PubMed  Google Scholar 

  92. Rickard, A. H., Gilbert, P., High, N. J., Kolenbrander, P. E. & Handley, P. S. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11, 94–100 (2003).

    CAS  PubMed  Google Scholar 

  93. Libby, E. & Ratcliff, W. C. Lichens and microbial syntrophies offer models for an interdependent route to multicellularity. Lichenologist 53, 283–290 (2021).

    Google Scholar 

  94. Sanders, W. B. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: propagule dispersal, establishment of symbiosis, thallus development, and formation of sexual and asexual reproductive structures. Am. J. Bot. 101, 1836–1848 (2014).

    PubMed  Google Scholar 

  95. Nash, I. T. H. Lichen Biology. 2nd edn (Cambridge University Press, 2008).

  96. Kirov, S. M. et al. Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153, 3264–3274 (2007).

    CAS  PubMed  Google Scholar 

  97. Webb, J. S., Lau, M. & Kjelleberg, S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186, 8066–8073 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Koh, K. S. et al. Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. J. Bacteriol. 189, 119–130 (2007).

    CAS  PubMed  Google Scholar 

  99. McElroy, K. E. et al. Strain-specific parallel evolution drives short-term diversification during Pseudomonas aeruginosa biofilm formation. Proc. Natl Acad. Sci. USA 111, E1419–E1427 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Neiman, A. M. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 565–584 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, Y. Y. & Kim, J. G. The optimal balance between sexual and asexual reproduction in variable environments: a systematic review. J. Ecol. Environ. 40, 12 (2016).

    Google Scholar 

  102. Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evolut. 4, 41–44 (1989).

    CAS  Google Scholar 

  103. Flemming, H. C. & Wingender, J. Extracellular Polymeric Substances (EPS): Structural, ecological and technical aspects. in Encyclopedia of Environmental Microbiology Vol. 3 (ed G. Bitton) 1223–1231 (Wiley, 2002). https://doi.org/10.1002/0471263397.env292.

  104. Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial “Protective Clothing” in extreme environments. Int. J. Mol. Sci. 20, 3423 (2019).

    CAS  PubMed Central  Google Scholar 

  105. Mulcahy, H., Charron-Mazenod, L. & Lewenza, S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 4, e1000213 (2008).

  106. Stewart, P. S. Antimicrobial tolerance in biofilms. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MB-0010-2014 (2015).

  107. McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).

    CAS  Google Scholar 

  108. Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evolut. Appl. 8, 273–283 (2015).

    Google Scholar 

  109. Booth, S. C. et al. Differences in metabolism between the biofilm and planktonic response to metal stress. J. Proteome Res. 10, 3190–3199 (2011).

    CAS  PubMed  Google Scholar 

  110. Dötsch, A. et al. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS ONE 7, e31092 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Resch, A., Rosenstein, R., Nerz, C. & Götz, F. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl. Environ. Microbiol. 71, 2663–2676 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Scherr, T. D. et al. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. mBio https://doi.org/10.1128/mBio.01021-15 (2015).

  113. Southey-Pillig, C. J., Davies, D. G. & Sauer, K. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J. Bacteriol. 187, 8114–8126 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamada, K. J. & Kielian, T. Biofilm-leukocyte cross-talk: impact on immune polarization and immunometabolism. J. Innate Immun. 11, 280–288 (2019).

    CAS  PubMed  Google Scholar 

  115. Roy, R., Tiwari, M., Donelli, G. & Tiwari, V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9, 522–554 (2018).

    CAS  PubMed  Google Scholar 

  116. Givskov, M. et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178, 6618–6622 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sambanthamoorthy, K. et al. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling 30, 17–28 (2014).

    CAS  PubMed  Google Scholar 

  118. Hell, É., Giske, C. G., Nelson, A., Römling, U. & Marchini, G. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett. Appl. Microbiol. 50, 211–215 (2010).

    CAS  PubMed  Google Scholar 

  119. Boucher, J. C., Yu, H., Mudd, M. H. & Deretic, V. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect. Immun. 65, 3838–3846 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 


Page 2

Panel a depicts the main stages of biofilm development, i.e., the attachment of cells/cell aggregates to a substratum, formation of microcolonies and their maturation, followed by dispersal of single motile cells and cell aggregates from biofilms. Panel b shows key stages involved in the vegetative reproduction of lichens, including the attachment and growth of symbiotic aggregates (consisting of fungal and algal cells) that are detached from the main lichen thallus, or via aposymbiotic dispersal and germination of fungi followed by re-engagement of algal partners and lichenisation94.