Would you expect higher or lower glucose levels for dairy tolerant individuals after consuming milk?

FULL STORY

A change in breakfast routine may provide benefits for the management of type 2 diabetes, according to a new study published in the Journal of Dairy Science. H. Douglas Goff, PhD, and the team of scientists from the Human Nutraceutical Research Unit at the University of Guelph, in collaboration with the University of Toronto, examined the effects of consuming high-protein milk at breakfast on blood glucose levels and satiety after breakfast and after a second meal. Milk consumed with breakfast cereal reduced postprandial blood glucose concentration compared with water, and high dairy protein concentration reduced postprandial blood glucose concentration compared with normal dairy protein concentration. The high-protein treatment also reduced appetite after the second meal compared with the low-protein equivalent.

"Metabolic diseases are on the rise globally, with type 2 diabetes and obesity as leading concerns in human health," Dr. Goff and team said. "Thus, there is impetus to develop dietary strategies for the risk reduction and management of obesity and diabetes to empower consumers to improve their personal health."

In this randomized, controlled, double-blinded study, the team examined the effects of increasing protein concentration and increasing the proportion of whey protein in milk consumed with a high-carbohydrate breakfast cereal on blood glucose, feelings of satiety, and food consumption later in the day. Digestion of the whey and casein proteins naturally present in milk releases gastric hormones that slow digestion, increasing feelings of fullness. Digestion of whey proteins achieves this effect more quickly, whereas casein proteins provide a longer lasting effect.

Although the team only found a modest difference in food consumption at the lunch meal when increasing whey protein at breakfast, they did find that milk consumed with a high-carbohydrate breakfast reduced blood glucose even after lunch, and high-protein milk had a greater effect. Milk with an increased proportion of whey protein had a modest effect on pre-lunch blood glucose, achieving a greater decrease than that provided by regular milk.

According to Dr. Goff and colleagues, "This study confirms the importance of milk at breakfast time to aid in the slower digestion of carbohydrate and to help maintain lower blood sugar levels. Nutritionists have always stressed the importance of a healthy breakfast, and this study should encourage consumers to include milk."

make a difference: sponsored opportunity

Story Source:

Materials provided by Elsevier. Note: Content may be edited for style and length.

Journal Reference:

  1. B. Kung, G.H. Anderson, S. Paré, A.J. Tucker, S. Vien, A.J. Wright, H.D. Goff. Effect of milk protein intake and casein-to-whey ratio in breakfast meals on postprandial glucose, satiety ratings, and subsequent meal intake. Journal of Dairy Science, 2018; DOI: 10.3168/jds.2018-14419


1. CDC. Crude and Age-Adjusted Rate Percentage of Civilian, Noninstitutionalized Adults with Diagnosed Diabetes, United States, 1980–2011. Atlanta, Ga, USA: National Center for Chronic Disease Prevention and Health Promotion; 2012. [Google Scholar]

2. Zimmet P., Alberti K. G. M. M., Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–787. doi: 10.1038/414782a. [PubMed] [CrossRef] [Google Scholar]

3. Danaei G., Finucane M. M., Lu Y., et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. The Lancet. 2011;378(9785):31–40. doi: 10.1016/s0140-6736(11)60679-x. [PubMed] [CrossRef] [Google Scholar]

4. Eriksson K.-F., Lindgarde F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmö feasibility study. Diabetologia. 1991;34(12):891–898. doi: 10.1007/bf00400196. [PubMed] [CrossRef] [Google Scholar]

5. Gillies C. L., Abrams K. R., Lambert P. C., et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. British Medical Journal. 2007;334(7588):299–302. doi: 10.1136/bmj.39063.689375.55. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Hu F. B., Manson J. E., Stampfer M. J., et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. The New England Journal of Medicine. 2001;345(11):790–797. doi: 10.1056/NEJMoa010492. [PubMed] [CrossRef] [Google Scholar]

7. Knowler W. C., Barrett-Connor E., Fowler S. E., et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine. 2002;346(6):393–403. doi: 10.1056/nejmoa012512. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. West K. M., Kalbfleisch J. M. Influence of nutritional factors on prevalence of diabetes. Diabetes. 1971;20(2):99–108. doi: 10.2337/diab.20.2.99. [PubMed] [CrossRef] [Google Scholar]

9. van Dam R. M., Rimm E. B., Willett W. C., Stampfer M. J., Hu F. B. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Annals of Internal Medicine. 2002;136(3):201–209. doi: 10.7326/0003-4819-136-3-200202050-00008. [PubMed] [CrossRef] [Google Scholar]

10. Salmerón J., Manson J. E., Stampfer M. J., Colditz G. A., Wing A. L., Willett W. C. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. Journal of the American Medical Association. 1997;277(6):472–477. doi: 10.1001/jama.1997.03540300040031. [PubMed] [CrossRef] [Google Scholar]

11. Schulze M. B., Liu S. M., Rimm E. B., Manson J. E., Willett W. C., Hu F. B. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. The American Journal of Clinical Nutrition. 2004;80(2):348–356. [PubMed] [Google Scholar]

12. Choi H. K., Willett W. C., Stampfer M. J., Rimm E., Hu F. B. Dairy consumption and risk of type 2 diabetes mellitus in men—a prospective study. Archives of Internal Medicine. 2005;165(9):997–1003. doi: 10.1001/archinte.165.9.997. [PubMed] [CrossRef] [Google Scholar]

13. Liu S., Choi H. K., Ford E., et al. A prospective study of dairy intake and the risk of type 2 diabetes in women. Diabetes Care. 2006;29(7):1579–1584. doi: 10.2337/dc06-0256. [PubMed] [CrossRef] [Google Scholar]

14. Malik V. S., Sun Q., van Dam R. M., et al. Adolescent dairy product consumption and risk of type 2 diabetes in middle-aged women. The American Journal of Clinical Nutrition. 2011;94(3):854–861. doi: 10.3945/ajcn.110.009621. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Elwood P. C., Pickering J. E., Fehily A. M. Milk and dairy consumption, diabetes and the metabolic syndrome: the Caerphilly prospective study. Journal of Epidemiology and Community Health. 2007;61(8):695–698. doi: 10.1136/jech.2006.053157. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Fumeron F., Lamri A., Abi Khalil C., et al. Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome. Results from a French prospective study, data from the epidemiological study on the insulin resistance syndrome (DESIR) Diabetes Care. 2011;34(4):813–817. doi: 10.2337/dc10-1772. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Pereira M. A., Jacobs D. R., Jr., van Horn L., Slattery M. L., Kartashov A. I., Ludwig D. S. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA study. The Journal of the American Medical Association. 2002;287(16):2081–2089. doi: 10.1001/jama.287.16.2081. [PubMed] [CrossRef] [Google Scholar]

18. Kirii K., Mizoue T., Iso H., et al. Calcium, vitamin D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort. Diabetologia. 2009;52(12):2542–2550. doi: 10.1007/s00125-009-1554-x. [PubMed] [CrossRef] [Google Scholar]

19. Pittas A. G., Dawson-Hughes B., Li T., et al. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care. 2006;29(3):650–656. doi: 10.2337/diacare.29.03.06.dc05-1961. [PubMed] [CrossRef] [Google Scholar]

20. Sluijs I., Forouhi N. G., Beulens J. W. J., et al. The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct study. The American Journal of Clinical Nutrition. 2012;96(2):382–390. doi: 10.3945/ajcn.111.021907. [PubMed] [CrossRef] [Google Scholar]

21. Snijder M. B., van Dam R. M., Stehouwer C. D. A., Hiddink G. J., Heine R. J., Dekker J. M. A prospective study of dairy consumption in relation to changes in metabolic risk factors: the Hoorn study. Obesity. 2008;16(3):706–709. doi: 10.1038/oby.2007.93. [PubMed] [CrossRef] [Google Scholar]

22. van Dam R. M., Hu F. B., Rosenberg L., Krishnan S., Palmer J. R. Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in U.S. black women. Diabetes Care. 2006;29(10):2238–2243. doi: 10.2337/dc06-1014. [PubMed] [CrossRef] [Google Scholar]

23. Defronzo R. A., Bonadonna R. C., Ferrannini E. Pathogenesis of NIDDM—a balanced overview. Diabetes Care. 1992;15(3):318–368. doi: 10.2337/diacare.15.3.318. [PubMed] [CrossRef] [Google Scholar]

24. Alberti K. G., Zimmet P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine. 1998;15(7):539–553. doi: 10.1002/(sici)1096-9136(199807)15:7x003C;539::aid-dia668x0003e;3.0.co;2-s. [PubMed] [CrossRef] [Google Scholar]

25. DeFronzo R. A., Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–194. [PubMed] [Google Scholar]

26. Reaven G. M. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–1607. doi: 10.2337/diab.37.12.1595. [PubMed] [CrossRef] [Google Scholar]

27. Hoppe C., Mølgaard C., Dalum C., Vaag A., Michaelsen K. F. Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. European Journal of Clinical Nutrition. 2009;63(9):1076–1083. doi: 10.1038/ejcn.2009.34. [PubMed] [CrossRef] [Google Scholar]

28. Gannon M. C., Nuttall F. Q., Krezowski P. A., Billington C. J., Parker S. The serum insulin and plasma glucose responses to milk and fruit products in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1986;29(11):784–791. doi: 10.1007/bf00873217. [PubMed] [CrossRef] [Google Scholar]

29. Hoyt G., Hickey M. S., Cordain L. Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk. British Journal of Nutrition. 2005;93(2):175–177. doi: 10.1079/BJN20041304. [PubMed] [CrossRef] [Google Scholar]

30. Östman E. M., Elmståhl H. G. M. L., Björck I. M. E. Inconsistency between glycemic and insulinemic responses to regular and fermented milk products. The American Journal of Clinical Nutrition. 2001;74(1):96–100. [PubMed] [Google Scholar]

31. Liljeberg Elmståhl H., Björck I. Milk as a supplement to mixed meals may elevate postprandial insulinaemia. European Journal of Clinical Nutrition. 2001;55(11):994–999. doi: 10.1038/sj/ejcn/1601259. [PubMed] [CrossRef] [Google Scholar]

32. Nuttall F. Q., Gannon M. C. Quantiative importance of dietary constituents other than glucose as insulin secretagogues in type II diabetes. Diabetes Care. 1988;11(1):72–76. doi: 10.2337/diacare.11.1.72. [PubMed] [CrossRef] [Google Scholar]

33. del Prato S., Leonetti F., Simonson D. C., Sheehan P., Matsuda M., DeFronzo R. A. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia. 1994;37(10):1025–1035. doi: 10.1007/s001250050213. [PubMed] [CrossRef] [Google Scholar]

34. Juan C.-C., Fang V. S., Kwok C.-F., Perng J.-C., Chou Y.-C., Ho L.-T. Exogenous hyperinsulinemia causes insulin resistance, hyperendothelinemia, and subsequent hypertension in rats. Metabolism: Clinical and Experimental. 1999;48(4):465–471. doi: 10.1016/s0026-0495(99)90105-1. [PubMed] [CrossRef] [Google Scholar]

35. Yokoyama H., Hirose H., Ohgo H., Saito I. Associations among lifestyle status, serum adiponectin level and insulin resistance. Internal Medicine. 2004;43(6):453–457. doi: 10.2169/internalmedicine.43.453. [PubMed] [CrossRef] [Google Scholar]

36. Kahn B. B., Flier J. S. Obesity and insulin resistance. The Journal of Clinical Investigation. 2000;106(4):473–481. doi: 10.1172/jci10842. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Ryan A. S. Insulin resistance with aging—effects of diet and exercise. Sports Medicine. 2000;30(5):327–346. doi: 10.2165/00007256-200030050-00002. [PubMed] [CrossRef] [Google Scholar]

38. Barnard R. J., Youngren J. F., Martin D. A. Diet, not aging, causes skeletal muscle insulin resistance. Gerontology. 1995;41(4):205–211. doi: 10.1159/000213683. [PubMed] [CrossRef] [Google Scholar]

39. Hirschler V., Oestreicher K., Beccaria M., Hidalgo M., Maccallini G. Inverse association between insulin resistance and frequency of milk consumption in low-income Argentinean school children. The Journal of Pediatrics. 2009;154(1):101–105. doi: 10.1016/j.jpeds.2008.06.036. [PubMed] [CrossRef] [Google Scholar]

40. Hoppe C., Mølgaard C., Vaag A., Barkholt V., Michaelsen K. F. High intakes of milk, but not meat, increase s-insulin and insulin resistance in 8-year-old boys. European Journal of Clinical Nutrition. 2005;59(3):393–398. doi: 10.1038/sj.ejcn.1602086. [PubMed] [CrossRef] [Google Scholar]

41. Akter S., Kurotani K., Nanri A., et al. Dairy consumption is associated with decreased insulin resistance among the Japanese. Nutrition Research. 2013;33(4):286–292. doi: 10.1016/j.nutres.2013.01.009. [PubMed] [CrossRef] [Google Scholar]

42. Rideout T. C., Marinangeli C. P. F., Martin H., Browne R. W., Rempel C. B. Consumption of low-fat dairy foods for 6 months improves insulin resistance without adversely affecting lipids or bodyweight in healthy adults: a randomized free-living cross-over study. Nutrition Journal. 2013;12(1, article 56) doi: 10.1186/1475-2891-12-56. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Rothman K. J. BMI-related errors in the measurement of obesity. International Journal of Obesity. 2008;32(3):S56–S59. doi: 10.1038/ijo.2008.87. [PubMed] [CrossRef] [Google Scholar]

44. Laporte R. E., Montoye H. J., Caspersen C. J. Assessment of physical activity in epidemiologic research—problems and prospects. Public Health Reports. 1985;100(2):131–146. [PMC free article] [PubMed] [Google Scholar]

45. Tucker J. M., Welk G. J., Beyler N. K. Physical activity in U.S.: adults compliance with the physical activity guidelines for Americans. American Journal of Preventive Medicine. 2011;40(4):454–461. doi: 10.1016/j.amepre.2010.12.016. [PubMed] [CrossRef] [Google Scholar]

46. Guthrie H. A. Selection and quantification of typical food portions by young adults. Journal of the American Dietetic Association. 1984;84(12):1440–1444. [PubMed] [Google Scholar]

47. Hartman A. M., Brown C. C., Palmgren J., et al. Variability in nutrient and food intakes among older middle-aged men. Implications for design of epidemiologic and validation studies using food recording. The American Journal of Epidemiology. 1990;132(5):999–1012. [PubMed] [Google Scholar]

48. Baranowski T. 24-Hour recall and diet record methods. In: Willett W. C., editor. Nutritional Epidemiology. New York, NY, USA: Oxford University Press; 2013. pp. 49–69. [Google Scholar]

49. Matthews D. R., Hosker J. P., Rudenski A. S., Naylor B. A., Treacher D. F., Turner R. C. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/bf00280883. [PubMed] [CrossRef] [Google Scholar]

50. Bonora E., Saggiani F., Targher G., et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23(1):57–63. doi: 10.2337/diacare.23.1.57. [PubMed] [CrossRef] [Google Scholar]

51. Bingham S. A., Cassidy A., Cole T. J., et al. Validation of weighed records and other methods of dietary assessment using the 24-h urine nitrogen technique and other biological markers. British Journal of Nutrition. 1995;73(4):531–550. doi: 10.1079/bjn19950057. [PubMed] [CrossRef] [Google Scholar]

52. Jain M., Howe G. R., Rohan T. Dietary assessment in epidemiology: comparison of a food frequency and a diet history questionnaire with a 7-day food record. American Journal of Epidemiology. 1996;143(9):953–960. doi: 10.1093/oxfordjournals.aje.a008839. [PubMed] [CrossRef] [Google Scholar]

53. Ravussin E., Lillioja S., Anderson T. E., Christin L., Bogardus C. Determinants of 24-hour energy expenditure in man—methods and results using a respiratory chamber. The Journal of Clinical Investigation. 1986;78(6):1568–1578. doi: 10.1172/jci112749. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Tucker L. A., Tucker J. M., Bailey B., LeCheminant J. D. Meat intake increases risk of weight gain in women: a prospective cohort investigation. American Journal of Health Promotion. 2014;29(1):e43–e52. doi: 10.4278/ajhp.130314-quan-112. [PubMed] [CrossRef] [Google Scholar]

55. Tucker L. A., Tucker J. M., Bailey B., LeCheminant J. D. Dietary patterns as predictors of body fat and BMI in women: a factor analytic study. The American Journal of Health Promotion. 2014 doi: 10.4278/ajhp.130327-quan-129. [PubMed] [CrossRef] [Google Scholar]

56. Bassett D. R., Jr., Ainsworth B. E., Swartz A. M., Strath S. J., O'Brien W. L., King G. A. Validity of four motion sensors in measuring moderate intensity physical activity. Medicine and Science in Sports and Exercise. 2000;32(9, supplement):S471–S480. doi: 10.1097/00005768-200009001-00006. [PubMed] [CrossRef] [Google Scholar]

57. Brage S., Wedderkopp N., Franks P. W., Bo Andersen L., Froberg K. Reexamination of validity and reliability of the CSA monitor in walking and running. Medicine and Science in Sports and Exercise. 2003;35(8):1447–1454. doi: 10.1249/01.MSS.0000079078.62035.EC. [PubMed] [CrossRef] [Google Scholar]

58. Liu A.-L., Li Y.-P., Song J., Pan H., Han X.-M., Ma G.-S. Study on the validation of the computer science application's activity monitor in assessing the physical activity among adults using doubly labeled water method. Zhonghua liu xing bing xue za zhi. 2005;26(3):197–200. [PubMed] [Google Scholar]

59. Tucker L. A., Tucker J. M. Television viewing and obesity in 300 women: evaluation of the pathways of energy intake and physical activity. Obesity. 2011;19(10):1950–1956. doi: 10.1038/oby.2011.184. [PubMed] [CrossRef] [Google Scholar]

60. Tucker L. A., Peterson T. R. Objectively measured intensity of physical activity and adiposity in middle-aged women. Obesity Research. 2003;11(12):1581–1587. doi: 10.1038/oby.2003.210. [PubMed] [CrossRef] [Google Scholar]

61. Nokes N. R., Tucker L. A. Changes in hip bone mineral density and objectively measured physical activity in middle-aged women: a 6-year prospective study. American Journal of Health Promotion. 2012;26(6):341–347. doi: 10.4278/ajhp.100622-quan-208. [PubMed] [CrossRef] [Google Scholar]

62. LeCheminant J., Tucker L., Russell K. Physical activity and C-reactive protein levels: the confounding role of body fat. Journal of Physical Activity and Health. 2011;8(4):481–487. [PubMed] [Google Scholar]

63. Maddalozzo G. F., Cardinal B. J., Snow C. M. Concurrent validity of the BOD POD and dual energy X-ray absorptiometry techniques for assessing body composition in young women. Journal of the American Dietetic Association. 2002;102(11):1677–1679. doi: 10.1016/s0002-8223(02)90358-5. [PubMed] [CrossRef] [Google Scholar]

64. LeCheminant J. D., Tucker L. A., Peterson T. R., Bailey B. W. Differences in body fat percentage measured using dual energy X-Ray absorptiometry and the Bod Pod in 100 women. Medicine & Science in Sports & Exercise. 2001;33(5):p. S174. doi: 10.1097/00005768-200105001-00989. [CrossRef] [Google Scholar]

65. Tucker L. A., Lecheminant J. D., Bailey B. W. Test-retest reliability of the BOD POD: the effect of multiple assessments. Perceptual and Motor Skills. 2014;118(2):563–570. doi: 10.2466/03.pms.118k15w5. [PubMed] [CrossRef] [Google Scholar]

66. Snijder M. B., van der Heijden A. A. W. A., van Dam R. M., et al. Is higher dairy consumption associated with lower body weight and fewer metabolic disturbances? The Hoorn study. The American Journal of Clinical Nutrition. 2007;85(4):989–995. [PubMed] [Google Scholar]

67. Lawlor D. A., Ebrahim S., Timpson N., Smith G. D. Avoiding milk is associated with a reduced risk of insulin resistance and the metabolic syndrome: findings from the British Women's Heart and Health Study. Diabetic Medicine. 2005;22(6):808–811. doi: 10.1111/j.1464-5491.2005.01537.x. [PubMed] [CrossRef] [Google Scholar]

68. Ludvik B., Nolan J. J., Baloga J., Sacks D., Olefsky J. Effect of obesity on insulin resistance in normal subjects and patients with NIDDM. Diabetes. 1995;44(9):1121–1125. doi: 10.2337/diab.44.9.1121. [PubMed] [CrossRef] [Google Scholar]

69. Abbasi F., Brown B. W., Jr., Lamendola C., McLaughlin T., Reaven G. M. Relationship between obesity, insulin resistance, and coronary heart disease risk. Journal of the American College of Cardiology. 2002;40(5):937–943. doi: 10.1016/S0735-1097(02)02051-X. [PubMed] [CrossRef] [Google Scholar]

70. Helmrich S. P., Ragland D. R., Leung R. W., Paffenbarger R. S., Jr. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. The New England Journal of Medicine. 1991;325(3):147–152. doi: 10.1056/nejm199107183250302. [PubMed] [CrossRef] [Google Scholar]

71. Ivy J. L. Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports Medicine. 1997;24(5):321–336. doi: 10.2165/00007256-199724050-00004. [PubMed] [CrossRef] [Google Scholar]

72. Borghouts L. B., Keizer H. A. Exercise and insulin sensitivity: a review. International Journal of Sports Medicine. 2000;21(1):1–12. doi: 10.1055/s-2000-8847. [PubMed] [CrossRef] [Google Scholar]

73. Rave K., Roggen K., Dellweg S., Heise T., Dieck H. T. Improvement of insulin resistance after diet with a whole-grain based dietary product: results of a randomized, controlled cross-over study in obese subjects with elevated fasting blood glucose. British Journal of Nutrition. 2007;98(5):929–936. doi: 10.1017/s0007114507749267. [PubMed] [CrossRef] [Google Scholar]

74. Breneman C. B., Tucker L. A. Dietary fibre consumption and insulin resistance—the role of body fat and physical activity. British Journal of Nutrition. 2013;110(2):375–383. doi: 10.1017/s0007114512004953. [PubMed] [CrossRef] [Google Scholar]

75. Ludwig D. S., Pereira M. A., Kroenke C. H., et al. Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. Journal of the American Medical Association. 1999;282(16):1539–1546. doi: 10.1001/jama.282.16.1539. [PubMed] [CrossRef] [Google Scholar]

76. Salmerón J., Ascherio A., Rimm E. B., et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care. 1997;20(4):545–550. doi: 10.2337/diacare.20.4.545. [PubMed] [CrossRef] [Google Scholar]

77. Björck I., Liljeberg H., Östman E. Low glycaemic-index foods. British Journal of Nutrition. 2000;83(1):S149–S155. [PubMed] [Google Scholar]

78. Leahy J. L., Bonner-Weir S., Weir G. C. β-cell dysfunction induced by chronic hyperglycemia: current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care. 1992;15(3):442–455. doi: 10.2337/diacare.15.3.442. [PubMed] [CrossRef] [Google Scholar]

79. Sluijs I., Beulens J. W. J., van der A D. L., Spijkerman A. M. W., Grobbee D. E., van der Schouw Y. T. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European prospective investigation into cancer and nutrition (EPIC)-NL study. Diabetes Care. 2010;33(1):43–48. doi: 10.2337/dc09-1321. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Promintzer M., Krebs M. Effects of dietary protein on glucose homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care. 2006;9(4):463–468. doi: 10.1097/01.mco.0000232909.84483.a9. [PubMed] [CrossRef] [Google Scholar]

81. Tremblay F., Lavigne C., Jacques H., Marette A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annual Review of Nutrition. 2007;27:293–310. doi: 10.1146/annurev.nutr.25.050304.092545. [PubMed] [CrossRef] [Google Scholar]

82. Polonsky K. S., Sturis J., Bell G. I. Non-insulin-dependent diabetes mellitus—a genetically programmed failure of the beta cell to compensate for insulin resistance. The New England Journal of Medicine. 1996;334(12):777–783. doi: 10.1056/nejm199603213341207. [PubMed] [CrossRef] [Google Scholar]


Page 2

Descriptive statistics (n = 272).

VariablesMeanSDMinPercentileMax
25th50th 75th
Weight (kg)66.110.042.158.965.272.095.5
Age (years)40.13.034.038.040.043.046.0
Activity (counts/week)* 2700.1781.9827.82103.92669.63166.64945.9
Body fat (%)31.76.914.627.232.236.844.8
Fasting glucose (mg/dL)86.75.973.082.087.090.0111.0
Fasting insulin (μU/mL)7.04.21.24.36.18.334.8
Energy intake (kJ/day)8585.11335.06293.77624.08386.49332.014623.0
Energy intake (kcal/day)2051.9319.11504.01822.12004.42230.43495.1
Carbohydrate (% of total kJ)55.76.225.451.756.059.473.3
Protein (% of total kJ)13.82.58.512.313.515.125.5
Fat (% of total kJ)30.55.811.627.130.334.551.6
Insoluble fiber (g/4184 kJ)† 3.81.90.52.53.44.712.6
Soluble fiber (g/4184 kJ)† 1.70.90.21.11.62.06.3
Dairy intake (serv./day)1.11.00.00.51.01.66.0
Dairy intake (serv./4184 kJ)0.60.50.00.20.50.83.1
HOMA‡ 1.51.00.20.91.31.88.3
HOMA (log-transformed)0.30.6−1.5−0.10.30.62.1