The use of hyperventilation to lower intracranial pressure should be used

  1. Muizelaar JP, van der Poel HG, Li ZC, Kontos HA, Levasseur JE. Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit. J Neurosurg. 1988;69(6):923–7.

    Article  CAS  Google Scholar 

  2. Stocchetti N, Maas AI, Chieregato A, van der Plas AA. Hyperventilation in head injury: a review. Chest. 2005;127(5):1812–27.

    Article  Google Scholar 

  3. Godoy DA, Seifi A, Garza D, Lubillo-Montenegro S, Murillo-Cabezas F. Hyperventilation therapy for control of posttraumatic intracranial hypertension. Front Neurol. 2017;8:250.

    Article  Google Scholar 

  4. Coles JP, Minhas PS, Fryer TD, Smielewski P, Aigbirihio F, Donovan T, et al. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med. 2002;30(9):1950–9.

    Article  CAS  Google Scholar 

  5. Coles JP, Fryer TD, Coleman MR, Smielewski P, Gupta AK, Minhas PS, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35(2):568–78.

    Article  CAS  Google Scholar 

  6. Diringer MN, Yundt K, Yideen TO, Adams RE, Zazulia AR, Deibert E, et al. No reduction in cerebral metabolism as a result of early moderate hyperventilation following severe traumatic brain injury. J Neurosurg. 2000;92(1):7–13.

    Article  CAS  Google Scholar 

  7. Chesnut RM, Temkin N, Dikmen S, Rondina C, Videtta W, Petroni G, et al. A method of managing severe traumatic brain injury in the absence of intracranial pressure monitoring: the imaging and clinical examination protocol. J Neurotrauma. 2018;35(1):54–63.

    Article  Google Scholar 

  8. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(9):1189–209.

    Article  Google Scholar 

  9. Rosenthal G, Hemphill JC 3rd, Sorani M, Martin C, Morabito D, Obrist WD, et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36(6):1917–24.

    Article  CAS  Google Scholar 

  10. Rohlwink UK, Zwane E, Fieggen AG, Argent AC, le Roux PD, Figaji AA. The relationship between intracranial pressure and brain oxygenation in children with severe traumatic brain injury. Neurosurgery. 2012;70(5):1220–30 discussion 1231.

    Article  Google Scholar 

  11. Eriksson EA, Barletta JF, Figueroa BE, Bonnell BW, Vanderkolk WE, McAllen KJ, et al. Cerebral perfusion pressure and intracranial pressure are not surrogates for brain tissue oxygenation in traumatic brain injury. Clin Neurophysiol. 2012;123(6):1255–60.

    Article  Google Scholar 

  12. Ainslie PN, Celi L, McGrattan K, Peebles K, Ogoh S. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2. Brain Res. 2008;1230:115–24.

    Article  CAS  Google Scholar 

  13. Minhas JS, Panerai RB, Robinson TG. Modelling the cerebral haemodynamic response in the physiological range of PaCO2. Physiol Meas. 2018;39(6):065001.

    Article  CAS  Google Scholar 

  14. McCarville MB, Goodin GS, Fortner G, Li CS, Smeltzer MP, Adams R, et al. Evaluation of a comprehensive transcranial Doppler screening program for children with sickle cell anemia. Pediatr Blood Cancer. 2008;50(4):818–21.

    Article  Google Scholar 

  15. Klinzing S, Steiger P, Schupbach RA, Bechir M, Brandi G. Competence for transcranial color-coded duplex sonography is rapidly acquired. Minerva Anestesiol. 2015;81(3):298–304.

    CAS  PubMed  Google Scholar 

  16. Zweifel C, Czosnyka M, Carrera E, de Riva N, Pickard JD, Smielewski P. Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery. 2012;71(4):853–61.

    Article  Google Scholar 

  17. Diringer MN, Videen TO, Yundt K, Zazulia AR, Aiyagari V, Dacey RG Jr, et al. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg. 2002;96(1):103–8.

    Article  Google Scholar 

  18. Cold GE. Does acute hyperventilation provoke cerebral oligaemia in comatose patients after acute head injury? Acta Neurochir (Wien). 1989;96(3-4):100–6.

    Article  CAS  Google Scholar 

  19. Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA. Cerebral blood flow and metabolism in comatose patients with acute head injury: relationship to intracranial hypertension. J Neurosurg. 1984;61(2):241–53.

    Article  CAS  Google Scholar 

  20. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75(5):731–9.

    Article  CAS  Google Scholar 

  21. Minhas JS, Panerai RB, Robinson TG. Sex differences in cerebral haemodynamics across the physiological range of PaCO2. Physiol Meas. 2018;39(10):105009.

    Article  CAS  Google Scholar 

  22. Minhas JS, Panerai RB, Ghaly G, Divall P, Robinson TG. Cerebral autoregulation in hemorrhagic stroke: a systematic review and meta-analysis of transcranial Doppler ultrasonography studies. J Clin Ultrasound. 2019;47(1):14–21.

    Article  Google Scholar 

  23. Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg. 1991;75(5):685–93.

    Article  CAS  Google Scholar 

  24. Hawryluk GW, Phan N, Ferguson AR, Morabito D, Derugin N, Stewart CL, et al. Brain tissue oxygen tension and its response to physiological manipulations: influence of distance from injury site in a swine model of traumatic brain injury. J Neurosurg. 2016;125(5):1217–28.

    Article  CAS  Google Scholar 

  25. Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, et al. Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol. 2012;590(14):3261–75.

    Article  CAS  Google Scholar 

  26. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47(3):701–9 discussion 9-10.

    CAS  PubMed  Google Scholar 


Page 2

n = 11 A
Baseline
B
Minute ventilation
C
Moderate hyperventilation
D
50 min of moderate hyperventilation
E
Return to baseline
etCO2 (kPa) 5.0 (0.7) 4.3 (0.6)* 4.2 (0.6)*§ 4.0 (0.7)*§ 4.7 (0.7)*§¶Ŧ
MV (L/min) 6.9 (1.4) 8.6 (1.6)* 8.7 (1.7)* 8.4 (1.5)* 6.8 (1.4)§¶Ŧ
pH 7.37 (0.09)   7.45 (0.02)* 7.46 (0.03)*¶ 7.41 (0.03)¶Ŧ
PaCO2 (kPa) 5.0 (0.2)   4.3 (0.2)* 4.1 (0.4)*¶ 4.7 (0.4)*¶Ŧ
PaO2 (kPa) 17.2 (1.5)   17.9 (1.9) 18.8 (2.3)*¶ 17.4 (1.2)Ŧ

  1. Abbreviations: A Baseline, B Increasing minute ventilation, C Begin moderate hyperventilation with target PaCO2 4–4.7 kPa, D After moderate hyperventilation for 50 min, E Return to baseline, etCO2 End-tidal CO2, MV Minute ventilation (L/min), PaCO2 Partial pressure arterial carbon dioxide (kPa), PaO2 Partial pressure arterial oxygen (kPa)
  2. Data are expressed as mean (SD)
  3. * p < 0.05 compared with A
  4. § p < 0.05 compared with B
  5. ¶ p < 0.05 compared with C
  6. Ŧ p < 0.05 compared with D